BALLISTIK

VON

DR. PHIL. HERMANN ATHEN

Referent für Ballistik

1 9 4 1

VERLAG VON QUELLE & MEYER IN LEIPZIG

Alle Rechte vorbehalten

Gedruckt bei Oswald Schmidt GmbH. in Leipzig

VORWORT

Das vorliegende Buch soll die theoretischen Grundlagen der äußeren und inneren Ballistik vermitteln. Bei dieser Aufgabe wird bewußt darauf verzichtet, den experimentellen Teil eingehender zu behandeln, als es im Rahmen einer theoretischen Darstellung unbedingt nötig ist. Dagegen wird stets darauf geachtet, die theoretischen Entwicklungen auf die praktischen Belange abzustellen, so daß fast alles, was in diesem Buche behandelt wird, unmittelbar auf die Aufgaben der Praxis übertragen werden kann.

Die Entwicklung der theoretischen Ballistik liefert ein getreues Abbild der eigentlichen Waffenentwicklung. Mit der Vervollkommnung der Waffen, so z. B. mit der allmählichen Vergrößerung der Schußweiten, wuchs auch die Verfeinerung der im Laufe der Zeit angegebenen Lösungsverfahren ihrer Ballistik. Es wurde in diesem Zusammenhang manchmal die Ansicht geäußert, daß ein mcdernes Buch über Ballistik auf die Mitteilung der älteren Methoden der Ballistik verzichten könnte und nur das modernste Lösungsverfahren bringen sollte. Dieser Ansicht konnte ich nicht zustimmen. In der neuzeitlichen Artillerie gibt es nach wie vor Geräte, die in ihren Anforderungen und Leistungen durchaus den Geschützen früherer Zeit ähneln. Für die Aufstellung ihrer Ballistik würde die Anwendung der modernsten Lösungsverfahren keine dem Aufwand entsprechende Steigerung der Genauigkeit bringen. In solchen Fällen genügen immer noch die älteren, einfacheren Lösungsverfahren. Diese Gründe haben mich veranlaßt, die Lösungen der ballistischen Probleme aus allen Zeitabschnitten zu behandeln. unter dem Gesichtspunkt jedoch, daß diese älteren Lösungen auch heute noch, allerdings nur für bestimmte Aufgaben, verwendungsfähig sind. - Darüber hinaus soll das vorliegende Buch auch einen Einblick in die Entwicklung der theoretischen Ballistik vermitteln.

An dieser Stelle möchte ich Herrn Ref. C. Garve und Herrn Dr. Ing. habil. W. Lohmann für ihre kritische Mithilfe beim Korrekturlesen meinen herzlichen Dank abstatten. Nicht zuletzt gilt mein Dank auch dem Verlag Quelle & Meyer, der auf alle Wünsche bereitwillig einging und die äußere Ausstattung des Buches in jeder Weise vervollkommnete.

Ich übergebe dieses Buch der Öffentlichkeit mit dem Wunsche, daß es zu seinem Teil an der Vertiefung des Interesses für wehrwissenschaftliche Dinge beitragen und den Ballistikern eine willkommene Hilfe sein möge.

Berlin, im Juli 1941

Dr. Hermann Athen

INHALTSVERZEICHNIS

Vorwort	3
A. Einleitung	9
I. Allgemeines	9
II Das ballistische Problem	
III Das Geschütz	11
IV. Das Geschoß	14
B. Äußere Ballistik	16
Kap. I. Die wirksamen Kräfte beim Geschoßflug und	l die
Bewegungsgleichungen des Geschosses	16
§ 1. Die Kräfte	16
a) Die Schwerkraft	16
b) Der Luftwiderstand	17
c) Luftwiderstandsmessungen und Luftwiderstand	dsge-
	26
a) Luitwiderstand und Luittemperatur	33 36
f) Poissoneffekt und Magnuseffekt	38
§ 2. Theoretische Ableitung eines Widerstandsgesetzes.	38
§ 3. Die Differentialgleichungen der Bewegung	43
§4. Erste Zusammenfassung (Kräfte und Bewegungs	sglei-
chungen)	47
Kap. II. Der luftleere Raum. Allgemeine Flugbahnei	igen-
schaften. Ballistische Ähnlichkeit	49
§ 5. Ballistik im luftleeren Raum	49
a) Die Flugbahngleichungen und Flugbahnelement	е 4 9
b) Zusammenhänge zwischen den Bahnen einer ga	nzen
Schar	
keit und des Abgangswinkels	naig- 57
d) Flugbahnen des luftleeren Raumes bei Berücksi	iehti-
gung aller Kräfte	58
§ 6. Allgemeine Eigenschaften jeder Flugbahn im lufterfü	illten
Raum	68
a) Geometrische und dynamische Verhältnisse	<u>68</u>
b) Genaherte Bestimmung des Flugbahnverlaufes.	
a) Einfachster Fall für Potenzoesetze	· · · · · 79 79
b) Der Ähnlichkeitssatz von Langevin	81
§ 8. Zweite Zusammenfassung (Luftleerer Raum: Flugh	oahn-
eigenschaften; Ähnlichkeit)	85

Inhaltsverzeichnis

Kap. III. Photogrammetrische Flugbahnvermessung	88
§ 9. Definitionen	88
§ 10. Die Auswerteformeln	91
§11. Meßfehler	93
§ 12. Beispiel	95
Kap. IV. Analytische Methoden zur Lösung der ballistischen Differentialgleichungen	95
	50
§ 13. Allgemeine Einteilung der Lösungen § 14. Die Integrabilität der ballistischen Differentialgleichun- gen der Boweung	95
a) Allgemeine Theorie aller Integrale der Hodographen- gleichung	97
b) Widerstandsgesetze in rationaler Form	- 97 103
c) Das quadratische und kubische Widerstandsgesetz.	100
d) Integrable Fälle bei Berücksichtigung der Luftge-	107
wichtsabnahme	113
§ 15. Bestimmung der ballistischen Integrale aus einer ange-	
näherten Differentialgleichung	117
a) Aligemeiner Fall	117
c) Die Mittelwertbestimmung von Vallier	122 128
d) Die Lösungen Charbonniers	130
e) Verschärfung der Konvergenz durch Popoff	133
f) Die Hauptgleichung von Cavalli für veränderliches Luftgewicht	135
§ 16. Reihenentwicklungen in der äußeren Ballistik	137
a) Potenzreihen nach der Zeit mit ihren Umkehrungen	-0.
und Näherungen	137
b) Parameterentwicklungen	145
c) Teilbogenberechnung der Flugbahnen	159
§ 17. Zusammenfassende Übersicht der Integrationsmethoden für die hallistischen Bewegungsgleichungen	169
Kap. V. Graphische, numerische und mechanische Lösung	
der außenballistischen Gleichungen	175
§ 18. Graphische Methoden	175
a) Das Verfahren von Vahlen	176
Rothe	177
§ 19. Numerische Integration der ballistischen Differential-	
gleichungen	181
a) Das Verfahren von Runge-Kutta	181
b) Das Verfahren der wiederholten Integration	182

Inhaltsverzeichnis

§ 20.	Mechanische Integration der ballistischen Bewegungs- gleichungen	185
Kap. V Flugi	I. Der Drall. Einfluß der Kreiselwirkung auf die Dahn	186
§ 21.	Allgemeine Gesichtspunkte	186
§ 22.	Folgsamkeit und Stabilität	188
$\S 23.$	Die Bewegungsgleichungen unter dem Einfluß des Dralls	192
§ 24.	Die Integration der Bewegungsgleichungen bei Geschoß- drell	107
Kap, V	II. Störungen der Flugbahnen	197 202
£ 95	Finfache Näherungsformeln	202
§ 25. § 26.	Strenge Formeln für beliebige Störungen	202
3	a) Allgemeiner Ansatz	205
	b) Sonderfälle bestimmter Störungen. Die Darrieus-	•
8.07	schen Formeln	208
§ 27.	a) Änderung der Anfangsgeschwindigkeit	211
	b) Änderung des ballistischen Beiwertes	212
	c) Windeinfluß	213
	d) Höhenveränderliche Störungen (Wind und Luft-	916
§ 28.	Andere Art der Störungsrechnung	218
C. Anwend	ung der Wahrscheinlichkeitslehre auf die Ballistik	221
8 29	Begriff der Wahrscheinlichkeit. Mathematische Formu-	
ş 20.	lierung	221
§ 30.	Experimentelle Bestimmung des Präzisionsmaßes. Aus-	
	reißer	223
§ 31.	Berechnung der Trettwahrscheinlichkeit gegen Flachen	229
D. Schußta	ıfelballistik	232
§ 32.	Die Schußtafelberechnung	232
	a) Versuchsanordnung und Versuchsdurchführung	232
	drucks	235
	c) Auswertung der Versuchsergebnisse	237
§ 33.	Die Schießbehelfe	238
	a) Die Schußtafel	238
	die graphische Schußtafel	241
E. Innere	Ballistik	243
Kap. I.	Das innenballistische Problem	243

Inhaltsverzeichnis

Kap. II. Die Grundgleichungen der inneren Ballistik	245
 § 34. Die Abelsche Gleichung § 35. Die Energiegleichung § 36. Das Verbrennungsgesetz des Pulvers § 37. Das System der Hauptgleichungen der inneren Ballistik 	245 246 248 250
Kap. III. Die Lösungsverfahren zum Hauptproblem der inneren Ballistik	251
 § 38. Integrabilität der Hauptgleichungen der inneren Ballistik. Lösungen von Krupp-Schmitz und Cranz § 39. Die Lösung des innenballistischen Problems durch Charbonnier	251 253
 § 40. Das halbempirische Lösungsverfahren von Gossot und Liouville § 41. Hinweis auf andere ältere und neuere Lösungen § 42. Rein empirische Lösungen des Hauptproblems der in- neren Ballistik. Vorschlag von Heydenreich 	258 261 262
Kap. IV. Zusammenfassung der innenballistischen Formeln	264
F. Die Ballistik des Bombenwurfs	2 68
§ 43. Darlegung des Problems§ 44. Bestimmung der Bombenflugbahn	$268 \\ 271$
G. Literaturangaben	278
H. Verzeichnis der für die Ballistik wichtigsten mathematischen Sätze	284
Sach- und Namenverzeichnis	293
Anhang: Zahlentafeln ballistisch wichtiger Funktionen	299

A. EINLEITUNG

I. Allgemeines

Das Gesamtgebiet der Ballistik ist im Laufe seiner Entwicklung zu einem umfangreichen wissenschaftlichen Teilgebiet angewachsen, dessen volle Beherrschung ein großes Maß von Kenntnissen in allen Zweigen der mathematisch-physikalischen Wissenschaften voraussetzt. Bei dieser Sachlage kann eine Behandlung ballistischer Probleme, wenn sie nicht in den Grundlagen steckenbleiben soll, auch kaum ohne gewisse mathematische Vorkenntnisse fruchtbringend gestaltet werden. Im vorliegenden Buch ist trotz des Bemühens, die mathematische und physikalische Seite so streng wie möglich einzuhalten, versucht worden, mit einem Mindestmaß von Voraussetzungen auszukommen. Um jedoch dem Leser die Bewältigung des umfangreichen Stoffes zu erleichtern, ist am Schluß des Buches ein Verzeichnis der für die Ballistik wichtigsten mathematischen Sätze angefügt. Im Text verweisen römische Hochzahlen in Klammern auf den betreffenden Absatz dieses Verzeichnisses (z. B.: Satz von Taylor (VI)).

Die Symbolik und die Bezeichnungen der ballistischen Elemente sind im allgemeinen so beibehalten worden, wie sie wohl hauptsächlich von Cranz in die deutsche Ballistik eingeführt wurden.

Da schließlich in dem engen Rahmen dieses Buches nicht alle Probleme der Ballistik erschöpfend behandelt werden konnten, ist dem Buch ein besonderer Literaturanhang angefügt worden. Er soll das Eindringen in spezielle Fragen ermöglichen. Im Textteil des Buches geben arabische Hochzahlen in Klammern die Nummer im Literaturverzeichnis an (z. B.: Cranz⁽³⁾).

II. Das ballistische Problem

Die Ballistik ist die Lehre vom Schuß. Sie behandelt die Vorgänge beim Schießen an und in der Waffe und untersucht die mit dem fliegenden Geschoß zusammenhängenden Probleme. Dazu

Einleitung

kommen Fragen der Geschoßstreuung und Treffwahrscheinlichkeit, der Geschoßgestaltung und der Geschoßwirkung im Ziel. Es kann nicht zu den Aufgaben dieses Buches gehören, auf Erkenntnisse dieser Teilgebiete einzugehen, soweit sich darauf die Geschützund Geschoßkonstruktion sowie die Schießlehre stützen.

Vielmehr soll im Vordergrund der Entwicklungen als Wichtigstes die Lehre des fliegenden Geschosses stehen (Äußere Ballistik), ferner das Problem des Geschoßantriebs und der Bewegung des Geschosses im Geschützrohr (Innere Ballistik). Mit diesen beiden Teilgebieten hängen die Erfordernisse des Treffens (Wahrscheinlichkeitstheorie, Schußtafelballistik) eng zusammen. Geschütz und Geschoß sollen nur ganz kurz, soweit es für das Verständnis des Buches wichtig ist, behandelt werden.

Das ballistische Problem bietet sich also in folgender Form dar: das Geschoß wird unter der Wirkung der Pulvergase aus dem unter bestimmter Neigung stehenden Geschützrohr getrieben und erreicht infolge der Nachwirkung der Pulvergase kurz nach Verlassen der Rohrmündung seine Höchstgeschwindigkeit. Die Weiterbewegung des Geschosses erfolgt vornehmlich unter dem Einfluß der Anziehungskraft der Erde und des Widerstandes der durchflogenen Lufthülle. Es sind also vier Fragen, die beantwortet werden müssen, nämlich:

- 1. Wie erfolgt die Bewegung des Geschosses im Rohr bis zum Erreichen der Höchstgeschwindigkeit vor der Rohrmündung?
- 2. Wie läßt sich die Bewegung des Geschosses durch die Luft mathematisch und physikalisch erfassen?
- 3. Welche zufälligen bzw. unkontrollierbaren Abweichungen von den Ergebnissen der Untersuchungen an den vorangehenden Fragen sind möglich und nach welchen Gesetzen lassen sie sich theoretisch vorausbestimmen?
- 4. In welcher Weise müssen Schießversuche angestellt werden, um Unterlagen für die Beantwortung der Fragen 1 bis 3 zu erhalten, und wie sind die Schießbehelfe für den Soldaten zweckmäßig aufzubauen?

Das ist der sich in natürlicher Reihenfolge ergebende Fragenkomplex der Ballistik. In der Behandlung werden wir allerdings den Fragenpunkt 2 vor den Punkt 1 setzen.

III. Das Geschütz

Die wesentlichsten Bestandteile des Geschützes sind das Rohr mit Verschluß und Abzugsvorrichtung, die Lafette mit Höhen- und Seitenrichtwerk, Lafettenschwanz und Sporn, die Rohrwiege mit Rohrbremse und Vorholer, die Räder und die Zieleinrichtung. Das Rohr nimmt das Geschoß auf und gibt ihm durch eine Anzahl von eingeschnittenen, von links nach rechts laufenden Zügen eine rotierende Bewegung (Rechtsdrall). Die Lafette trägt die Rohrwiege und das Rohr, Lafettenschwanz und Sporn fangen den Rückstoß beim Schuß auf. Betrachten wir zunächst den Fall starrer Verbindung zwischen Rohr

bindung zwischen und Lafette. Im Schwerpunkt S des Geschützes (Abb. 1) greifen die Kräfte G (Gewicht des Geschützes senkrecht nach unten) und P (Pulverdruck in Richtung der Rohrerhöhung φ) an und setzen sich zur Resultierenden R zusammen. die unter dem Winkel ρ gegen die Horizontale geneigt ist. Die gesamte Vertikalbelastung ist $R \cdot \sin \rho$ $= P \cdot \sin \varphi + G$, die sich auf Sporn und Räder ver-

ADD. 1. Kräfte beim Geschütz

teilt. Wird nun die Erhöhung des Rohres verändert, so kann bei kleineren Erhöhungen die Resultante R durch den Sporn gehen, womit der Raddruck verschwindet. Bei noch flacheren Erhöhungen liegt R über dem Sporn; es tritt eine Drehbewegung des Geschützes um den Sporn ein: das Geschütz "bockt". Hierdurch können zusammen mit den durch die Pulverexplosion verursachten, kleineren oder größeren Rohrschwingungen Verhältnisse auftreten, die die anfänglich eingestellte Rohrerhöhung im Augenblick des Geschoßaustritts aus der Mündung verändern; diese Abweichung nennt man "Abgangsfehlerwinkel". Eine andere häufig vorkommende Ursache für Erhöhungsabweichungen ist die Ver-

Einleitung

kantung des Geschützes: Die Rohrerhöhung sei φ , und der Winkel zwischen der Schußebene und der Verkantungsachse a sei a

(Abb. 2); dann ist der Winkel β zwischen der Horizontalebene und der Ebene durch Verkantungsachse und Rohrrichtung gegeben durch: ^(II)

$$\operatorname{ctg} \beta = \sin a \cdot \operatorname{ctg} \varphi.$$

Die Verkantung um den Betrag $\Delta\beta$ ergibt die neue Erhöhung ($\varphi + \Delta\varphi$) und eine Änderung Δa von a zu ($a + \Delta a$). Da weiter der Bogen DM = DMbleibt (Abb. 2), hat man zur

Abb. 2. Verkantung des Geschützes

Bestimmung von $\Delta \varphi$ als Erhöhungsänderung und $\Delta \alpha$ als Änderung der Seitenrichtung die 3 Gleichungen^(II)

$$\operatorname{ctg}\beta = \sin \alpha \cdot \operatorname{ctg}\varphi;$$

(1)
$$\begin{aligned} & \operatorname{ctg}(\beta + \Delta \beta) = \sin\left(a + \Delta a\right) \cdot \operatorname{ctg}(\varphi + \Delta \varphi); \\ & \cos a \cdot \cos \varphi = \cos\left(a + \Delta a\right) \cdot \cos\left(\varphi + \Delta \varphi\right), \text{ da } DM = DM, \end{aligned}$$

was schließlich ergibt

(1a)
$$\begin{cases} \operatorname{ctg} \beta = \sin a \cdot \operatorname{ctg} \varphi; \\ \sin(\varphi + \Delta \varphi) = \sin(\beta + \Delta \beta) \cdot \sqrt{1 - \cos^2 a \cdot \cos^2 \varphi}; \\ \operatorname{tg}(a + \Delta a) = \cos(\beta + \Delta \beta) \cdot \sqrt{\frac{1 - \cos^2 a \cdot \cos^2 \varphi}{\cos^2 a \cdot \cos^2 \varphi}}. \end{cases}$$

Beim schiefen Räderstand ist $a \sim 0$, d. h. $\beta = 90^{\circ}$. Ist $\Delta\beta$ sehr klein, so kann bei Benutzung des artill. Strichmaßes* gesetzt werden:

 $\sin \Delta\beta \approx \mathrm{tg} \, \Delta\beta \approx 0,001 \cdot \Delta\beta, \ \mathrm{d. \ h. \ } \cos \Delta\beta \approx 1 - \frac{1}{2} \, (0,001 \cdot \Delta\beta)^2$ und schließlich

$$\Delta a = \Delta \beta \cdot \operatorname{tg} \varphi; \quad \Delta \varphi = -0,0005 \cdot \operatorname{tg} \varphi \cdot (\Delta \beta)^2 \text{ (in Strich).}$$

* Ein Strich $(1^-) = 1/6400$ von 360° .

Zur Vermeidung der hier beschriebenen Verkantungsfehler sind an den Richtmitteln der Geschütze entsprechende Vorrichtungen vorhanden, die diese Fehler mechanisch ausschalten.

Eine weitere Konstruktionseigenschaft der Geschütze soll schließlich noch kurz besprochen werden: der Rohrrücklauf. Wir hatten oben starre Verbindung zwischen Rohr und Lafette vorausgesetzt. Schon bei einem 10-cm-Kaliber-Geschütz treten außerordentlich große Druckkräfte im Schildzapfenlager* auf, denen auf die Dauer keine Lafette gewachsen ist. Man hat daher Abhilfe dadurch geschaffen, daß das Rohr entgegen der Schußrichtung bei feststehender Lafette zurücklaufen kann, durch Flüssigkeitsbremsen abgestoppt und durch einen Vorholer wieder vorgebracht wird. Da die Rohrbremse mit ihrer Gleitbahn drehbar auf der Lafette angebracht ist, kann der Rücklauf bei jeder beliebigen Rohrerhöhung ermöglicht werden. Eine kurze Näherungsberechnung mag die Verhältnisse noch besser beleuchten. In den folgenden Entwicklungen bedeuten: $G_q = \text{Geschoßgewicht}, G_r = \text{Rohrge-}$ wicht, $v_o =$ Mündungsgeschwindigkeit des Geschosses, $v_r =$ Rücklaufgeschwindigkeit des Rohres, $l = \text{Rohrlänge}, s_q = \text{Geschoßweg},$ $s_r =$ Rücklaufweg des Rohres, $t_q =$ Durchlaufzeit des Geschosses durch das Rohr und K = Bremskraft. Nach dem Impulssatz bzw. Schwerpunktsatz gilt:

 $G_g \cdot v_0 + G_r \cdot v_r = 0$, d. h. $v_r = -v_0 \cdot \frac{G_g}{G_r}$; $G_g \cdot s_g + G_r \cdot s_r = 0$, oder, da $|s_r| + |s_g| = l$:**

$$|s_r| = \frac{l \cdot G_g}{G_r + G_g}.$$

Die Verzögerung *b* der Rohrgeschwindigkeit durch die Bremskraft *K* ist $b = \frac{g}{G_r} \cdot K$, so daß die Geschwindigkeit \bar{v}_r des gebremsten Rohres gegeben ist durch $\bar{v}_r = v_r - \frac{g}{G_r} \cdot K \cdot t_g$, während der gebremste Rohrweg $\bar{s}_r = s_r - \frac{1}{2} \cdot g \cdot \frac{K}{G_r} \cdot t_g^2$ ist. Schreibt man

^{*} Der Rohrquerschnitt beim Kaliber 2R ist $\pi \cdot R^2$, somit die Druckkraft im Schildzapfenlager $\pi \cdot R^2 \cdot p_{\max}$, wenn p_{\max} den Höchstdruck der Pulvergase bedeutet.

^{**} Nach Ablauf der Geschoßbewegung im Rohr, bezogen auf die anfängliche Lage des Geschosses.

Einleitung

nun die Rücklauflänge r vor, so ist die von der Bremskraft K geleistete Arbeit gleich $K \cdot (r - \bar{s}_r)$, die der Bewegungsenergie $\frac{G_r}{2g} \cdot \bar{v}_r^2$ des gebremsten Rohres gleichgesetzt werden muß. Somit bestimmt sich K aus der Gleichung*

$$\frac{\frac{G_r}{2g} \cdot \left(\mathbf{v_r} - \frac{g \cdot K}{G_r} \cdot t_g\right)^2}{K = \frac{G_r \cdot v_r^2}{2g \cdot (r - s_r + v_r \cdot t_g)}} \quad zu$$

K setzt sich im allgemeinen zusammen aus dem Bremswiderstand der Flüssigkeitsbremse und der Gegendruckkraft des Vorholers, vermindert um die in die Rücklaufrichtung fallende Komponente des Rohrgewichts.

Ein Zahlenbeispiel möge die Beanspruchung der Lafette bei gebremstem und starr verbundenem Rohr veranschaulichen: Bei einer 17-om-Kanone sei $G_r = 11000 \text{ kg}, \ l = 5 \text{ m}, \ G_o = 54 \text{ kg}, \ r = 0.36 \text{ m},$ Gasdruck $p = 3200 \text{ at}, \ v_o = 900 \text{ m/s}, \ t_g = 0.035 \text{ s};$ es ist dann $v_r = -4.4 \text{ m/s}, \ s_r = -0.024 \text{ m},$ die Druckkraft im Schildzapfenlager bei starrem Rohr 726000 kg, die Bremskraft K dagegen nur etwa 22000 kg, die die Lafette bei gebremstem Rohrrücklauf auszuhalten hat.

IV. Das Geschoß

Über die mannigfachen Arten der Geschosse nähere Ausführungen zu machen, verbietet der zur Verfügung stehende Raum. Das frühere Kugelgeschoß ist heute abgelöst durch zwei Arten von Geschossen: das Flügelgeschoß und das rotierende Langgeschoß. Die Verwendung der Kugelgeschosse hatte viele Nachteile zur Folge, die sich in großen Abweichungen der einzelnen Schüsse untereinander zeigten; der Grund war schlechte Abdichtung zwischen Geschoß und Rohr, so daß durch seitlich vorbeiströmende Gase dem Geschoß eine von der Rohrrichtung abweichende Abgangsrichtung erteilt wurde. Dazu kamen die durch Reibungen an der Rohrwand

^{*} Bei dieser Näherungsrechnung ist die Nachwirkung der Pulvergase nach dem Austritt des Geschosses aus der Mündung vernachlässigt. Es sei aber darauf aufmerksam gemacht, daß ihre Berücksichtigung in der Praxis unerläßlich ist.

verursachten Rotationen der Kugeln um ganz unkontrollierbare Achsen, was wiederum große "Streuungen" der einzelnen Schüsse zur Folge hatte, und zwar infolge des Magnus-Effektes, auf den wir noch zu sprechen kommen. Diese Mißstände sind bei den oben erwähnten beiden Geschoßarten nicht vorhanden. Abb. 3a zeigt

eine "Flügelmine", die meist bei kleineren Anfangsgeschwindigkeiten verschossen wird. Sie hat den tropfenförmigen Geschoßkörper K und trägt an ihrem Schwanzende eine Reihe von Flügeln F, die infolge der Pfeilwirkung das Geschoß in stabiler Lage in der Flugbahntangente festhalten. Am größten Geschoßdurchmesser ist die dem Rohrkaliber gleiche Zentrierwulst W aufgeschliffen, um eine sichere Führung im Rohr zu gewährleisten. Die in Abb. 3b dargestellte Form des "rotierenden Langgeschosses" besteht aus dem nicht ganz kalibergleichen Zylinderkörper Z. dem konisch zugespitzten Geschoßende E und der ...ogivalen" Geschoßspitze S. die eine Abrundung von meist 2 bis 5 Kalibern hat. Oft hat das Geschoß noch

Abb. 3. Flügelmine und Langgeschoß

eine kugelförmige Abflachung A (0,36 Kaliber beim Kruppschen Normalgeschoß). Das Besondere an diesem Geschoß ist weiter das mäßig überkalibergroße kupferne Führungsband R, welches eine doppelte Aufgabe zu erfüllen hat: einmal die Abdichtung des Geschosses gegen das Rohr, zweitens aber, dem Geschoß durch Einpressen in die Züge des Rohres eine rotierende Bewegung, den Drall, zu erteilen. Dieser bewirkt, daß das Geschoß infolge seiner Kreiseleigenschaften die Richtung seiner Längsachse unter gleichzeitiger Ausführung von Präzessionsbewegungen beizubehalten bestrebt ist. Auf nähere Einzelheiten zu dieser Frage gehen wir an anderer Stelle ein. — Schließlich erfolgt die Verwendung der beiden Geschoßarten aus Gründen einer Luftwiderstandsverringerung, auf die im entsprechenden Teil des Buches einzugehen ist.

B. ÄUSSERE BALLISTIK

Kap. I. Die wirksamen Kräfte beim Geschoßflug und die Bewegungsgleichungen des Geschosses

§ 1. Die Kräfte

a) Die Schwerkraft

Die Anziehungskraft der Erde (Schwerkraft) bewirkt beim freifallenden Körper an der Erdoberfläche eine Beschleunigung (g) von $g \sim 9.81 \text{ m/s}^2$. Da die Erde nicht als vollkommene Kugel angesehen werden kann, ist dieser Wert für verschiedene Breiten der Erdoberfläche verschieden. Befindet sich der Körper um die Strecke h, gemessen auf dem Erdradius R, von der Erdoberfläche entfernt, so sinkt der Wert der Schwerkraft nach dem Newtonschen Anziehungsgesetz auf

$$\bar{g} = g(h) = g \cdot \frac{R^2}{(R+h)^2}$$

Der Winkel α zwischen der y-Richtung und der Richtung MPist gegeben durch

$$\operatorname{tg} \alpha = \frac{1}{R+y} \frac{1}{R+y}.$$

Ferner ist

$$h = \sqrt{(R+y)^2 + x^2 + z^2} - R \approx y + \frac{1}{2} \cdot \frac{x^2 + z^2}{R+y}$$
(V).

somit die Schwerkraft g im Punkte P gemäß Formel (2):

$$g(h) = \bar{g} = g \cdot \frac{R^2}{(R+y)^2 + x^2 + z^2} \sim g \cdot \left| 1 - \frac{2}{R} \cdot \left(y + \frac{1}{2} \cdot \frac{x^2 + z^2}{R+y} \right) \right|.$$

Die Komponenten von \tilde{g} für die Koordinatenrichtungen x, y, z bestimmen sich zu

$$(3) \begin{vmatrix} \tilde{g}_{x} = \tilde{g} \cdot \sin \alpha \cdot \sin \beta = \tilde{g} \cdot \frac{x}{\sqrt{(R+y)^{2} + x^{2} + z^{2}}} \approx g \cdot \frac{x}{R+y} - \frac{g \cdot x}{R}, \\ & \text{da } y \ll R; \\ \tilde{g}_{y} = \tilde{g} \cdot \cos \alpha \qquad = \tilde{g} \cdot \frac{R+y}{\sqrt{(R+y)^{2} + x^{2} + z^{2}}} \approx g \cdot \left(1 - \frac{2}{R} \cdot y\right); \\ \tilde{g}_{z} = \tilde{g} \cdot \sin \alpha \cdot \cos \beta = \tilde{g} \cdot \frac{z}{\sqrt{(R+y)^{2} + x^{2} + z^{2}}} \approx g \cdot \frac{z}{R+y} - \frac{g \cdot z}{R}, \\ & \text{da } y \ll R. \end{cases}$$

In diesen Formeln sind die Glieder höherer Ordnung in $\frac{1}{D}$ fortgelassen worden. Die dadurch entstehenden Fehler sind zu vernachlässigen.

b) Der Luftwiderstand

Neben der soeben besprochenen Schwerkraft spielt der Luftwiderstand die größte Rolle. Es erscheint klar, daß dieser von der Fluggeschwindigkeit v des Geschosses, seinem Querschnitt q und der Luftdichte & abhängen muß. Unter Querschnitt wollen wir hier die senkrecht zur Bewegungsrichtung liegende ebene Projektion des Geschosses verstehen. Vahlen⁽⁴⁾ folgert dann für die Form des Gesetzes folgendes: Die Dimensionen von Länge, Masse und Zeit seien bezeichnet mit l, m, t; dann sind die Dimensionen des Querschnitts, der Geschwindigkeit und der Luftdichte gegeben durch l^2 , $l \cdot t^{-1}$ bzw. $m \cdot l^{-3}$. Der Luftwiderstand W als Kraft hat die Dimension $m \cdot l \cdot t^{-2}$. Bezeichnet man weiter die Potenzen, mit denen die Dimensionen von v, q und δ in den Widerstand W ein-Athen, Ballistik 2 gehen, mit a, β bzw. γ , so besteht die Beziehung $W = F(v^{\alpha}, q^{\beta}, \delta^{\gamma})$ oder in dimensionaler Betrachtung:

$$(m \cdot l \cdot l^{-2}) = \mu \cdot (l \cdot t^{-1})^a \cdot (l^2)^\beta \cdot (m \cdot l^{-3})^{\gamma},$$

wo μ eine dimensionslose Zahl bedeutet. Für die Exponenten von l; m; t bestehen somit die Gleichungen*

$$a + 2\beta - 3\gamma = 1; \ \gamma = 1; \ a = 2, \ d. h. \beta = 1.$$

Infolgedessen ist der Luftwiderstand proportional der ersten Potenz des Querschnitts, der Luftdichte und dem Quadrat der Geschwindigkeit; er hat also die Form

(4)
$$W = \mu \cdot q \cdot \delta \cdot v^2 = c \cdot v^2.$$

In dieser Formel soll μ eine konstante, dimensionslose Zahl sein. Die Erfahrung hat gezeigt, daß μ , also für ein bestimmtes Geschoß auch $c = \mu \cdot q \cdot \delta$, nicht konstant ist. Die Voraussetzung (4) trifft vielmehr einigermaßen genau zu nur für Geschwindigkeiten, die kleiner als 240 m/s sind. Je näher die Geschoßgeschwindigkeit an die Schallgeschwindigkeit herankommt, desto größer wird μ ; erst nach Erreichen einer bestimmten Geschwindigkeit \bar{v} (etwa 400 bis 500 m/s, je nach den betrachteten, verschiedenen Widerstandstabellen) wird μ wieder kleiner, ohne jedoch im allgemeinen den niedrigsten Wert von μ für $v < \bar{v}$, wieder zu erhalten. Der Widerstand stellt sich demnach auf Grund der vorangehenden Entwicklungen in der Form

(5)
$$W = \dot{c} \cdot v^2 \cdot K(v) = \dot{c} \cdot f(v)$$

dar. In Abb. 5 ist die K(v)-Kurve qualitativ nach Untersuchungen von O. v. Eberhard⁽⁴¹⁾ dargestellt, daneben auch eine ältere K(v)-Kurve, die von Siacci⁽⁴³⁾ auf Grund umfangreicher deutscher, russischer, englischer und holländischer Versuche im Jahre 1896 ermittelt wurde. Siacci gab folgenden analytischen Ausdruck für f(v):

^{*} Durch Exponentenvergleich der Potenzen von l, m bzw. t auf beiden Seiten der Dimensionsgleichung.

(6)
$$\begin{cases} f(v) = 0,2002 \cdot v - 48,05 + \sqrt{9,6} + (0,1648 \cdot v - 47,95)^2 \\ - \frac{0,0442 \cdot v \cdot (v - 300)}{371 + \left(\frac{v}{200}\right)^{10}}. \end{cases}$$

Neuerdings ist die Funktion f(v) von den Amerikanern verbessert worden; sie lautet

(7)
$$\log \frac{f(v)}{v^2} = \log \left\{ 0.255 + \frac{\sqrt[4]{1+0.0392 \cdot \left(\frac{v-330}{500}\right)^8}}{27226 + 494 \cdot \left(\frac{v-330}{50}\right)^2} \cdot \operatorname{arctg}\left(\frac{v-330}{50}\right) \right\} - \frac{v-600}{1000} .$$

Abb. 5. Widerstandsgesetze

amerikanischen Tabellenwerk ("Exterial Ballistic Tables based on Numerial Integration" $^{(37)}$) zugrunde gelegt. Den hier angeführten analytischen Ausdrücken für f(v) wurde als großer Vorteil nachgerühmt, daß sie sich auf eine große Anzahl von Versuchen mit Geschossen verschiedensten Kalibers und Gewichtes gründen. Daß dieser angebliche Vorteil in Wahrheit ein Mangel ist, werden wir weiter unten sehen. — Das Kruppsche Gesetz (v. Eberhard (41)) ist nur tabuliert.

Bevor wir in der Betrachtung über den Charakter der Funktionen f(v) und K(v) fortfahren, soll das Problem des Luftwiderstandes gegen das fliegende Geschoß noch von anderer Seite beleuchtet werden.

Das Geschoß mit der Längsachse AB (Abb. 6) fliege in der Richtung $\overline{P}v$, die mit der Tangente des Meridianschnitts den Winkel ε ,

tung Pv, die mit der Tangente des Meridianschnitts den Winkel ε , mit der Normalen *n* also den Winkel (90°- ε) bildet. Man nimmt

Abb. 6. Bestimmung des Luftwiderstandes

nun an, daß der Widerstand W_{ε} in der

Flugrichtung \overrightarrow{Pv} mit dem in der Richtung der Normalen ausgeübten Widerstand W_n durch die Formel

(8)
$$W_{\varepsilon} = \chi(\varepsilon) \cdot W_{n}$$

verbunden ist, solange es sich um die kleine Umgebung do des Punktes P handelt. In (8) stellt $\chi(\varepsilon)$ eine nicht näher definierte Funktion des Winkels ε dar. Obwohl verschiedene Annahmen über die Eigenschaften von $\chi(\varepsilon)$ gemacht worden sind, soll sie hier nicht weiter erörtert werden. In Übereinstimmung mit dem Obigen kann man nun für den in der Richtung \overrightarrow{Pv} wirkenden Luftwiderstand

gegen das Flächenelement do ansetzen

$$W_{\epsilon} = \delta \cdot \chi(\varepsilon) \cdot f(v) \cdot do.$$

Bezeichnet man mit r den senkrechten Abstand des Punktes Pvon der Geschoßachse und mit r den Winkel zwischen zwei Meridianschnitten, so ist der in die Richtung AB fallende Anteil von W_r

$$W_{AB} = \delta \cdot \chi (\varepsilon) \cdot f(v) \cdot r \cdot dr \cdot d\nu$$

und der Widerstand gegen die gesamte Geschoßfläche

$$W = \int \int \delta \cdot \chi(\varepsilon) \cdot f(v) \cdot r \cdot d r \cdot d \nu.$$

Dieses Integral ist bezüglich ν von 0 bis 2π und bezüglich r von 0 bis R (halbes Kaliber) zu erstrecken. Die Integration ergibt

(9)
$$W = \delta \cdot \pi \cdot R^2 \cdot f(v) \cdot \int_0^R \chi(\varepsilon) \cdot \frac{d(r^2)}{R^2}$$

oder wenn

$$\int_{0}^{R} \chi(\varepsilon) \cdot \frac{d(r^2)}{R^2} = i$$

gesetzt wird:

(10)
$$W = \pi \cdot R^2 \cdot \delta \cdot i \cdot f(v)$$

Das ist die heute noch gebräuchlichste Form des Luftwiderstandes. Man kann aus (10) schließlich durch Division von W durch die Masse des Geschosses folgende Formel (11) für die Verzögerung des Geschosses durch den Luftwiderstand herleiten:

(11)
$$\Re = c \cdot \delta \cdot i \cdot f(v) = c \cdot \delta \cdot i \cdot v^2 \cdot K(v)$$

wo $c = \frac{\pi \cdot R^2 \cdot g}{P}$ zu setzen ist; dabei ist *P* das Geschoßgewicht; *c* nennt man allgemein den "ballistischen Beiwert".

An die Formel (11) müssen einige wichtige Betrachtungen angeschlossen werden.

1. Je größer die sogenannte Querschnittsbelastung $Q = \frac{P}{\pi \cdot R^2}$ wird, desto kleiner fällt die Verzögerung des Geschosses durch den Luftwiderstand aus. Q ist direkt proportional dem Geschoßgewicht. Hier liegt auch einer der Gründe, die den Übergang von Kugelgeschossen zu Langgeschossen bewirken. Man erkennt ohne weiteres, daß bei einem Langgeschoß die Querschnittsbelastung viel größer gehalten werden kann als bei einem Kugelgeschoß.

So beträgt z. B. bei einem zylindrischen 10-cm-Vollgeschoß von 30 cm Länge die Querschnittsbelastung 2250 kg/m²; bei einem kugelförmigen Vollgeschoß von 10 cm Kaliber wird Q = 500 kg/m².

2. Die Verzögerung \Re ist direkt proportional einem Faktor i,

den man allgemein als "Formfaktor" bezeichnet. Nach dem Mittelwertsatz der Integralrechnung^(XII) kann man einen Mittelwert

$$\varepsilon = \varepsilon_m$$
 so bestimmen, daß $\int_0^R \chi(\varepsilon) \cdot \frac{d(r^2)}{R^2} = \chi(\varepsilon_m) \cdot \int_0^R \frac{d(r^2)}{R^2} = \chi(\varepsilon_m)$

wird. *i* ist also ein im wesentlichen von dem Meridianschnitt, d. h. von der Geschoßform abhängiger Faktor. Man hat in der Tat lange angenommen, daß f(v) eine universelle Funktion sei, die nur von der Geschwindigkeit abhängt, während die die Größe des Widerstandes regelnden Faktoren c und i durch das Geschoß bestimmt seien. Bei 2 Geschossen mit ähnlicher äußerer Form, aber verschiedenem Gewicht und Abmessungen, müßten sich, da i für beide nach dem vorangehenden gleich sein muß, die Verzögerungen durch den Luftwiderstand umgekehrt verhalten wie die Querschnittsbelastungen. Andererseits müßten sich die Verzögerungen bei Geschossen von gleichem Kaliber und Gewicht, aber verschiedener Form verhalten wie die i-Werte. Beides würde bedeuten, daß die K(v)-Werte des einen Geschosses durch Multiplikation mit einem konstanten Faktor aus denen des anderen Geschosses hervorgehen. Die Erfahrung hat dies nicht bestätigt; man überzeugt sich hiervon leicht durch Vergleich der in Abb. 5 dargestellten K(v)-Kurven für das Kruppsche Normalgeschoß und das zylindrische 10-cm-Geschoß oder das S-Geschoß. Aus praktischen Erwägungen heraus hat man aber doch lange, und zum Teil noch heute, bei vielen ballistischen Aufgaben daran festgehalten, i einen mittleren, konstanten Wert beizulegen. Für Geschosse bestimmter Form setzt man i = 1, so daß die K(v)-Kurve für eben diese Geschosse genau gültig ist. Für Geschosse anderer Form hat i einen von 1 verschiedenen Wert. So ist z. B. bei der K(v)-Kurve von O. v. Eberhard i = 1 für das Kruppsche Normalgeschoß (ogivale Spitze mit 2 Kalibern Abrundungsradius und vorderer Abflachung von 0.36 Kalibern). Dann wäre zu setzen bei

3	Kal.	Abrdg.	u.	0,36	Kal.	Abfl.	etwa	i = 0.87
3	,,	,,	,,	0,25	,,	,,	,,	i = 0,83
3	,,	,,	,,	scha	rfer S	Spitze	,,	i = 0,84

Das Gesetz von Siacci gilt für i = 1 bei Geschossen mit 1,4 bis 1,7 Kalibern Abrundungsradius der ogivalen Spitze. Beim Krupp-

schen Normalgeschoß soll nach Cranz⁽¹⁾ i = 0,865 für die Widerstandsfunktion f(v) von Siacci sein. Die oben schon vermutete Veränderlichkeit des Formfaktors i fand durch Versuche, die O. v. Eberhard⁽⁴¹⁾ durchführte, ihre Bestätigung. Nach O. v. Eberhard hat man für Geschosse, die von der Form des Normalgeschosses abweichen, folgende von der Geschwindigkeit abhängige Formfaktoren bei Benutzung der Kruppschen K(v)-Tabelle zu nehmen:

Für Geschosse mit

3 Kal. Abrdg. u. 0,36 Kal. Abfl.5,5 ,, ,, 0,36 ,, ,,3 ,, ,, 0,25 ,, ,, $3 ,, ,, ,, scharfer Spitze <math display="block">\begin{vmatrix} 1,3206 - \frac{58,2}{v} - 0,0001024 \cdot v \\ 1,4362 - \frac{73,4}{v} - 0,0001128 \cdot v \\ 1,1959 - \frac{40,6}{v} + 0,0001467 \cdot v \\ 1,1311 - \frac{47,7}{v} + 0,0003166 \cdot v \end{vmatrix}$

Für Infanteriegeschosse von der Form des S-Geschosses ist

$$\frac{1}{i} = 1,410 - \frac{122,68}{v} + 0,0005915 \cdot v$$
.

Für rein zylindrische Geschosse hat O. v. Eberhard keine besonderen *i*-Werte festgelegt, sondern eine nur für solche Geschosse gültige K(v)-Tabelle zusammengestellt.

3. Neben dem ballistischen Beiwert c und dem Faktor i tritt im Luftwiderstandsgesetz noch die Luftdichte δ auf.

Wir wollen daher schon an dieser Stelle darauf eingehen. Bekanntlich gilt für das Luftgewicht eines Kubikmeters in unseren Breiten, bezogen auf Meereshöhe, die Formel

(12)
$$\begin{cases} \delta_0 = \frac{1,2939 \cdot p_0}{760} \cdot \frac{273}{273 + t} - 0,174 \cdot \frac{s \cdot E}{273 + t} & \text{oder} \\ \delta_0 = 0,465 \cdot \frac{p_0}{T} - 0,174 \cdot \frac{\varepsilon}{T}. \end{cases}$$

Hierin bedeuten: $\delta_0 = \text{Luftgewicht}$ (der Größe nach gleich dem Gewicht eines Luftwürfels von 1 m³), $p_0 = \text{der auf } 0^\circ \text{C}$ reduzierte Barometerstand in mm Hg, t = Temperatur in Celsius-Graden, s = relative Feuchtigkeit, E = Spannkraft des Wasserdampfes in ge-

sättigter Luft, T = Temperatur in absoluten Graden, e = Spannkraft des tatsächlich in der Luft vorhandenen Wasserdampfes. Das Luftgewicht* (mithin auch die Luftdichte) ist eine mit der Höhe yüber Meereshöhe abnehmende Funktion. Der Verlauf dieser Funktion ist schnell abgeleitet. Bezeichnen wir mit δ das Luftgewicht eines Würfels mit 1 m Kantenlänge, wie es in Zukunft immer geschehen soll, so gilt die Zustandsgleichung

$$(13) p_0 = \delta_0 \cdot R \cdot T_0,$$

wo p_0 = Luftdruck, R = Gaskonstante = 29,29 für Luft, T_0 = absolute Temperatur. Für eine beliebige Höhe y gilt also

(13a)
$$p(y) = \delta(y) \cdot R \cdot T(y)$$
, d. h. $\frac{p_0}{p(y)} = \frac{\delta_0}{\delta(y)} \cdot \frac{T_0}{T(y)}$.

Daneben muß die Gleichgewichtsbedingung

$$(14) d p = -\delta \cdot d y$$

bestehen. Die Bedingung (14) folgt unmittelbar aus der Überlegung, daß die infinitesimale Abnahme des Luftdrucks (-dp)gleich sein muß dem Gewicht einer Luftsäule von 1 m² Grundfläche und einer Höhe dy. Aus (13a) und (14) folgt durch Differentiation und Gleichsetzen

$$dp = d\delta \cdot R \cdot T + \delta \cdot R \cdot dT = -\delta \cdot dy,$$

d. h.

$$\frac{d\delta}{\delta} = -\frac{dT}{T} - \frac{dy}{R \cdot T}$$

Integriert ergibt dieses

(15)
$$\frac{\delta(y)}{\delta_0} = \frac{T_0}{T(y)} \cdot e^{-\frac{1}{R}} \cdot \int_0^y \frac{dy}{T(y)}$$

und infolgedessen mit (13) und (13a), sowie mit (15):

^{*} Unter Luftgewicht wollen wir künftig das Gewicht eines Luftwürfels von 1 m Kantenlänge verstehen; damit ist dann auch die Luftdichte numerisch sofort angebbar.

(16)
$$\frac{p(y)}{p_0} - \frac{\delta(y)}{\delta_0} \cdot \frac{T(y)}{T_0} = e^{-\frac{1}{R}} \cdot \int_0^y \frac{dy}{T(y)}$$

Für die Funktion T(y) nimmt man im allgemeinen eine lineare Abnahme mit der Höhe an, solange y nicht über die Grenze der Troposphäre (bis ~ 12000 m Höhe) hinausgeht. In der Stratosphäre hat T den konstanten Wert von 213° abs. Infolgedessen folgt aus der Beziehung

(17)
$$T(y) = T_0 - \lambda \cdot y$$
 ($\lambda = \text{Temperaturgradient}$)

sofort $213 = 273 - \lambda \cdot 12000$ oder $\lambda \sim 0,005$. Bezeichnen wir mit μ_1 bzw. T_1 den Luftdruck bzw. die absolute Temperatur an der Grenze Troposphäre – Stratosphäre, so gilt mit Benutzung von (17)

(18)
$$\delta(y) = \delta_0 \cdot \left(\frac{273 - \lambda \cdot y}{273}\right)^{\frac{1}{R \cdot \lambda} - 1}$$

für die Troposphäre und

(19)
$$\delta(y) = \delta_1 \cdot e^{-\frac{y-12\,000}{213 \cdot R}}$$
 bzw. $p(y) = p_1 \cdot e^{-\frac{y-12\,000}{213 \cdot R}}$

für die Stratosphäre; dabei sind δ_1 und p_1 nach (18) zu bestimmen. Für viele Zwecke kommt man damit aus, für p(y) durchgängig eine der Formel (19) analoge zu benutzen:

(20)
$$p(y) = p_0 \cdot e^{-\frac{y}{R \cdot T_M}}$$

wo T_m einen mittleren Wert hat; für $T_m = 273^{\circ}$ abs. gilt also die sog. "barometrische Höhenformel":

(21)
$$y = 18400 \cdot \log^{10}\left(\frac{p_0}{p(y)}\right)$$

Zur Berücksichtigung der Luftgewichtsänderung mit der Höhe gibt es übrigens eine Reihe von Näherungsformeln, von denen wir zwei anführen wollen, da sie für die Ballistik von einiger Bedeutung geworden sind. Nach Everling⁽⁴⁶⁾ kann man auf Grund einer großen Zahl von Erfahrungswerten ansetzen

(22)
$$\delta(y) = \delta_0 \cdot e^{-0,000106 \cdot y} = \delta_0 \cdot 10^{-0,000046 \cdot y}$$

(Everlingsche Formel)

und nach St. Robert⁽⁴⁵⁾ oder Charbonnier⁽¹⁰⁻¹³⁾

(23) $\delta(y) = \delta_0 \cdot (1 - k \cdot y)$, wo k = 0,00008 bis 0,00011.

Man überzeugt sich leicht, daß (22) und (23) als Näherungsausdrücke aus (15) ableitbar sind. δ_0 setzt man im allgemeinen fest zu $\delta_0 = 1,22 \text{ kg/m}^3$.

Weitere Einzelheiten, soweit sie ballistisch von Interesse sind, werden wir an der entsprechenden Stelle behandeln.

c) Luftwiderstandsmessungen und Luftwiderstandsgesetze

Es sind heute mehrere Verfahren im Gebrauch, die es gestatten, den Luftwiderstand eines fliegenden Geschosses zu messen. Das einfachste und älteste Verfahren beruht auf der Bestimmung des Geschwindigkeitsabfalles des Geschosses auf einer passend gewählten Meßstrecke s. Mit geeigneten Apparaten, von denen weiter unten ausführlicher die Rede sein wird, werden am Anfang und am Ende der Strecke s die Geschoßgeschwindigkeiten v_1 und v_2 gemessen. Ist das Geschoßgewicht gleich P, so muß der mittlere Luftwiderstand* $W_m = W(v_m), \left| v_m = \frac{v_1 + v_2}{2} \right|$, auf der Strecke s die Arbeit $W_m \cdot s$ leisten, die ihrerseits gleich der Differenz der kinetischen Energieen in den Endpunkten der Strecke s ist, also bei Annahme der Geradlinigkeit der Flugbahn auf der Strecke s:

(24)
$$W_m = W(v_m) = \frac{P}{2g} \cdot \frac{v_1^2 - v_2^2}{s}.$$

Bei diesem Verfahren muß man natürlich besondere Sorgfalt darauf verwenden, daß außer der Geschwindigkeit alle Größen, wie * Das ist der Widerstand an derjenigen Stelle der Strecke s, wo die Geschwindigkeit den Mittelwert $v_m \frac{v_1 + v_2}{2}$ annimmt. Geschoßgewicht, Geschoßform, Kaliber usw., konstant gehalten werden. Das so gewonnene empirische Widerstandsgesetz gilt "einwandfrei" jedoch nur für das zum Versuch benutzte Geschoß. Soll es in seiner Gültigkeit auf andere Geschosse ausgedehnt werden, so muß bezüglich des ballistischen Beiwertes, der Luftdichte und des Formfaktors das oben Erwähnte berücksichtigt werden. Auf die Zulässigkeit dieser Maßnahmen wird weiter unten noch zurückzukommen sein.

Ein neuzeitliches Verfahren gestattet die photogrammetrische Festlegung der Flugbahn eines Leuchtspurgeschosses, sowohl nach ihren Koordinaten (x, y, z), sowie nach dem Zeitverlauf der Bewegung. Durch numerische Differentiation und Zuhilfenahme der Differentialgleichungen der Bewegung (s. S. 43) kann man daraus den Luftwiderstand ableiten.

In der Praxis sieht dieses Verfahren folgendermaßen aus: Beim Versuch, der nachts durchgeführt werden muß, wird das mit Leuchtsatz versehene Geschoß von 2 genau orientierten Phototheodoliten, deren Objektive nach dem Abfeuern in einem genau bekannten Rhythmus geöffnet und geschlossen werden, photographisch aufgenommen. Die Geschoßflugbahn stellt sich dann auf den beiden Platten je als gestrichelte Linie dar, bei der jeder Punkt den Ort des Geschosses nach einer Zeit von je Δt s bezeichnet; Δt ist festgelegt durch den Rhythmus der Belichtung. Aus der Lage der einzelnen Punkte auf den beiden Photoplatten kann mit geeigneten Ableseapparaten, den sog. Stereokomparatoren, die Lage dieser Punkte im Raum bestimmt werden (s. S. 88). Damit sind dann die Koordinaten (x, y, z) des Geschosses nach je einem Zeitintervall von Δt s bekannt.

Betrachten wir zunächst die Abszissen x. Die Ableitung $\frac{d^2x}{dt^2}$ ist, absolut genommen, gleich der Horizontalkomponente $\Re \cdot \cos \vartheta$ der Verzögerung durch den Luftwiderstand, wenn ϑ der Winkel zwischen Flugbahntangente und Abszissenachse ist; die Ableitung $\frac{dx}{dt}$ ist gleich der Horizontalkomponente $v \cdot \cos \vartheta$ der Geschwindigkeit. Bezeichnen wir mit $\Delta' x$ die jeweils zum Zeitelement Δt gehörigen Abszissenstücke, mit $\Delta'' x$ die ersten Differenzen der $\Delta' x$ und mit $\Delta''' x$ schließlich die zweiten Differenzen der $\Delta' x$ usw., so ist nach den Regeln der numerischen Differentiation^(IX) an der Stelle t 28 Kap. I. Die wirksamen Kräfte. Die Bewegungsgleichungen

(25)
$$\begin{cases} \left(\frac{dx}{dt}\right)_t = \left(v \cdot \cos\vartheta\right)_t = \frac{1}{\Delta t} \cdot \left[\left(\varDelta_m' x\right)_t - \frac{1}{6} \left(\varDelta_m'' x\right)_t + \cdots \right) \\ \left(\frac{d^2x}{dt^2}\right)_t = \left(-\Re \cdot \cos\vartheta\right)_t = \frac{1}{(\Delta t)^2} \left[\left(\varDelta'' x\right)_t - \frac{1}{12} \left(\varDelta'''' x\right)_t + \cdots \right] \end{cases}$$

Hier muß man bei den ungeraden Differenzen $\Delta', \Delta''', \ldots$ den Mittelwert Δ_m aus der unteren und oberen zu t gehörigen Zeile des Differenzenschemas* nehmen, für $\Delta'', \Delta'''', \ldots$ die Werte der gleichen Zeile. — Entsprechend ist für die Ordinaten $y: \frac{dy}{dt} = v \cdot \sin \vartheta$ gleich der Vertikalkomponente der Geschwindigkeit und $(-g - \Re \cdot \sin \vartheta) = \frac{d^2y}{dt^2}$ gleich der Resultierenden aus der Schwerebeschleunigung g und der Vertikalkomponente der Verzögerung durch den Luftwiderstand, folglich mit den gleichen Differenzbezeichnungen wie oben

$$(26) \begin{vmatrix} \left(\frac{dy}{dt}\right)_{t} = (v \cdot \sin \vartheta)_{t} = \frac{1}{\Box t} \cdot \left[\left(\varDelta_{m}^{\prime} y\right)_{t} - \frac{1}{6} \left(\varDelta_{m}^{\prime\prime\prime} y\right)_{t} + \cdots \right]; \\ \left(\frac{d^{2} y}{dt^{2}}\right)_{t} = -(g + \Re \cdot \sin \vartheta)_{t} = \frac{1}{(\varDelta t)^{2}} \cdot \left[\left(\varDelta^{\prime\prime\prime} y\right)_{t} - \frac{1}{12} \left(\varDelta^{\prime\prime\prime\prime} y\right)_{t} + \cdots \right]. \end{vmatrix}$$

Nach Bestimmung von $v \cdot \cos \vartheta$, $v \cdot \sin \vartheta$, $\Re \cdot \cos \vartheta$ und $\Re \cdot \sin \vartheta$ sind v und \Re ohne weiteres bestimmbar: $v = \sqrt{(v \cdot \sin \vartheta)^2 + (v \cdot \cos \vartheta)^2}$, $\Re = \sqrt{(\Re \cdot \sin \vartheta)^2 + (\Re \cdot \cos \vartheta)^2}$. Multipliziert man schließlich \Re noch mit $\frac{1}{c \cdot \vartheta}$, so erhält man nach (11) die Luftwiderstandsfunktion $i \cdot f(v)$ in tabellarischer Form.

Beispiel. Gemessen wurden die Punkte der folgenden Übersicht (Spalten 1 bis 3)

1	2	3	4	5	6	7	8	9	10	11
t		<i>y</i>	$\Delta' x$	$\Delta^{\prime\prime} x$	$\Delta^{\prime\prime\prime} x$	$\int \Delta^{\prime\prime\prime\prime} x$	$\Delta' y$	$\Delta^{\prime\prime} y$	<i>∆</i> ‴ y	$\Delta^{\prime\prime\prime\prime} y$
0,2 0,4 0,6 0,8 1,0	118,3 231,4 339,2 442,1 540,7	118,1 230,6 337,6 439,4 536,5		$\frac{-5,3}{-4,9}$ -4,3	$\frac{+0,4}{+0,6}$	+ 0,2		$\frac{-5,5}{-5,2}$ -4,7	$\frac{ +0,3 }{ +0,5 }$	+ 0,2

* Siehe Beispiel auf dieser Seite, unten.

ł

Da $\Delta t = 0.2 s$, erhält man für den in der Mitte stehenden Wert t = 0.6 s:

$$\frac{d\mathbf{x}}{dt} = \mathbf{v} \cdot \cos \vartheta = 526,36 \text{ m/s}; \quad \frac{dy}{dt} = \mathbf{v} \cdot \sin \vartheta = 521,65 \text{ m/s};$$
$$\Re \cdot \cos \vartheta = 122,9 \text{ m/s}^2; \quad \Re \cdot \sin \vartheta = 120,6 \text{ m/s}^2.$$

Dabei werden gemäß Formeln (25), (26) die eingerahmten Differenzen des Schemas benutzt. Ferner ist

$$\Re(v) = \Re(741,1) = 172,2 \text{ m/s}^2.$$

Da y = 337.6 m, ist $\frac{\delta(y)}{\dot{o}_0} = 0.965$ nach der Everlingschen Formel; da ein Geschoß von 15 kg und 10 cm Kaliber verfeuert war, erhält man mit $c = \frac{\pi \cdot (2R)^2 \cdot g}{100 \cdot P \cdot \delta_0} = 1.683^*$ (*R* in cm): $i \cdot f(v) = i \cdot f(741.1) = 86.9$ m/s².

Dieses Verfahren muß für alle Punkte der vermessenen Bahn wiederholt
werden, damit
$$i \cdot f(v)$$
 in tabellarischer Form erhalten wird. Unter Um-
ständen ist hieran noch eine weitere Korrektur vorzunehmen, die sich
aus der höhenveränderlichen Lufttemperatur ergibt (vgl. § 1d).

Wir haben schon oben darauf hingewiesen, daß die Praxis die multiplikative Verbindung von c, i, δ und f(v) im Luftwiderstand nirgends bestätigt hat. Es hat sich vielmehr gezeigt, daß der Luftwiderstand streng genommen für jedes Geschoß gesondert bestimmt werden muß. Die Verbindung $c \cdot \delta \cdot i \cdot f(v)$ stellt nur eine erste Annäherung an die tatsächlichen Verhältnisse dar; das strenge Luftwiderstandsgesetz müßte demnach von der allgemeinen Form

$$W = F(v, i, c, \delta)$$

sein. Es haben sich aber bisher für die Annahme, daß W proportional von δ sei, nirgends Widersprüche erhoben⁽¹⁾, allerdings liegen einwandfreie Versuche in dieser Richtung auch nicht vor. Wir können vorläufig also noch an der Form

$$W = \delta \cdot F(v, i, c)$$

für den Luftwiderstand festhalten. Wie weit diese Form auch

^{*} Dieser c-Wert ist anders definiert als z. B. in Formel (11). Dadurch tritt aber nur eine andere zahlenmäßige Normierung von f(v) ein, während die Größe der Verzögerung $c \cdot f(v)$ ungeändert bleibt.

theoretisch bestätigt werden kann, werden wir weiter unten sehen. Daß *i* implizit in F(v, c, i) enthalten sein muß, machen auch die bereits weiter oben angegebenen, von der Geschwindigkeit *v* abhängigen *i*-Werte von O. v. Eberhard wahrscheinlich. Die *i*-Werte stellen nichts anderes dar, als nicht konstante Korrektionswerte, die man freilich als nur schwach veränderlich annimmt. Daß auch c in F(v, c, i) implizit eingeht, folgt aus der Tatsache, daß *i* für gleichgeformte Geschosse verschiedenen Kalibers nicht konstant ist. Vielmehr hat man beobachtet, daß bei größeren Kalibern die v. Eberhardschen *i*-Werte zu groß werden. Nach Kritzinger⁽¹⁴⁾ muß man *i* mit den folgenden, nur näherungsweise konstanten "Kaliberfaktoren" multiplizieren:

Kaliber (cm)	6	10	15	20	25	30	35
Kaliberfaktor	1,04	1,00	0,92	0,82	0,71	0,56	0,45

Gleichwohl hat es sich für die meisten ballistischen Aufgaben als zweckmäßig erwiesen, mit für alle Geschosse einheitlichen Luftwiderstandsgesetzen zu arbeiten. Es gibt eine große Anzahl solcher Luftwiderstandsgesetze. Wir führen hier eine kleine Auswahl an, soweit sie heute überhaupt noch eine Bedeutung haben.

Das älteste, von Newton, Legendre, Bernoulli u. a. benutzte Gesetz hat die in Gleichung (4) angegebene einfachste Form. Danach ist die Verzögerung durch den Luftwiderstand gegeben durch

(27)
$$\Re = c_2 \cdot v^2$$
, we $c_2 = \frac{R^2 \cdot \pi \cdot \delta \cdot g \cdot 0.014 \cdot i}{P \cdot 1.206}$

Hierin ist 2R = Kaliber in m, $\delta = \text{Luftgewicht}$ in kg/m³, $g = 9.81 \text{ m/s}^2$, P = Geschoßgewicht in kg, i = Formfaktor (= 1 für Geschosse mit 2 Kalibern Abrundungsradius der ogivalen Spitze). K(v) ist für dieses Gesetz konstant $[c \cdot K(v) = c_2]$.

Weiterhin ist mit einer Abänderung dieses Luftwiderstandsgesetzes derart gerechnet worden, daß v nicht mehr mit der 2. Potenz, sondern mit einer beliebigen Potenz n eingeht, d. h.

(28)
$$\Re = c_n \cdot v^n$$

So hat z. B. Bashforth⁽¹⁸⁾ ausführliche ballistische Tabellen für

n=3 berechnet. Auch Polynome sind vielfach für \Re angesetzt worden, z. B.

$$\Re = a \cdot v^n + b \cdot v^m.$$

Das lange Zeit gebräuchlichste Gesetz war jenes von Siacci⁽⁴³⁾ [Formel (6)], oft gebraucht deswegen, weil ausgedehnte ballistische Tabellen darauf beruhen. Hierher gehören auch die Gesetze Formel (7) (Amerika⁽³⁷⁾) und das Kruppsche Widerstandsgesetz⁽⁴¹⁾, die alle drei bereits erwähnt wurden. Bestimmt man aus ihnen K(v), so erkennt man folgenden in Abb. 5 dargestellten charakteristischen Verlauf: bis etwa v = 200 m/s ist K(v) nach Siacci nahezu konstant, d. h. W hat die Form (4). Beim Kruppschen und amerikanischen Luftwiderstandsgesetz hat K(v) bei $v \sim 200 \text{ m/s}$ einen Tiefpunkt. Dann steigt die K(v)-Kurve stark an, hat bei etwa v = 330 m/s (Schallgeschwindigkeit) einen Wendepunkt und erreicht bei $v \sim 500$ m/s (Siacci) bzw. 430 - 480 m/s (Krupp, amerik. Gesetz) einen größten Wert. Von da an nähert sich K(v) asymptotisch einer Horizontalen, die jedoch höher liegt als der Tiefpunkt bei v = 200 m/s. Das bedeutet also, daß bei größeren Geschwindigkeiten wieder annähernd ein Gesetz der Form (4) besteht. In den folgenden Zahlentafeln sind einige Werte dieser verschiedenen Gesetze auszugsweise wiedergegeben.*

v	Siac	ci	Krupp Ame			erik. Gesetz	
m/s	$10^6 \cdot K(v)$	n(v)	$10^6 \cdot K(v)$	$n\left(v ight)$	$10^4 \cdot K(v)$	n(v)	
50	121	2,002			1,625	2,008	
100	121	2,010		_	1,495	1,835	
150	121	2,024	1,190		1,391	1,836	
200	123	2,073	1,195	2,039	1,363	2,104	
250	128	2,355	1,243	2,475	1,514	3,025	
300	172	5,875	1,551	4,650	2,133	4,906	
350	273	3,875	3,174	5,519	3,453	4,495	
400	323	2,757	3,843	2,448	4,228	2,760	
450	342	2,307	3,981	2,181	4,378	2,154	
500	348	2,061	3,998	1,986	4,436	1,865	
600	342	1,768	3,852	1,674	4,215	1,613	
700	326	1,591	3,647	1.674	3,944	1.557	
800	306	1,488	3,502	1,734	3,720	1,592	
900	287	1,413	3,400	1,763	3,564	1,671	
1000	269	1,356	3,320	1,795	3,467	1,763	

* Vgl. auch den Tabellenanhang

32 Kap. I. Die wirksamen Kräfte. Die Bewegungsgleichungen

Dabei ist die Verzögerung durch den Luftwiderstand:

$$\Re = c \cdot \delta \cdot f(v),$$

 mit

Siacci	Krupp	Amerik. Gesetz
$c = \frac{1000 \cdot i \cdot (2 R)^2}{1,206 \cdot P}$	$c = \frac{\pi \cdot R^2 \cdot g \cdot i}{1,220 \cdot P}$	$c = \frac{1000 \cdot (2R)^2 \cdot i}{1,250 \cdot P}$
Kaliber $2R$ in m, Geschoßgew. P in kg	R in cm, P in kg	R in m, P in kg

Die Integration der ballistischen Hauptgleichungen wird, wie wir an entsprechender Stelle sehen werden, bedeutend vereinfacht, wenn man ein Luftwiderstandsgesetz der Form (28) zugrunde legen kann. Für ein bestimmtes v müßte dann sein

$$c \cdot \delta \cdot f(v) = c_n \cdot v^n.$$

Durch logarithmische Ableitung nach v ergibt sich:

$$\frac{f'(v)}{f(v)} = \frac{n}{v}.$$

Für beliebige v haben also $c\cdot\delta\cdot f(v)$ und $c_n\cdot v^n$ eine zweipunktige Berührung, wenn

(29)
$$n(v) = v \cdot \frac{f'(v)}{f(v)}$$

gesetzt wird; n (v) nennt man auch den ballistischen Widerstandsgrad. Er ist, soweit er bekannt war, in die obige Tabelle eingetragen.

Man erkennt, daß n(v) mit v stellenweise stark veränderlich ist. In der Tat haben daher mehrere Ballistiker versucht, die Luftwiderstandsfunktion durch sog. "Zonenpotenzgesetze" anzunähern. So geben Mayewski ^{(5) (6)} und Sabudski ^{(7) (9) (44)} (Rußland) folgendes Gesetz an:

$$\Re = \frac{R^2 \cdot \pi \cdot \delta \cdot i \cdot g}{1,206 \cdot P} \cdot m \cdot v^n.$$

Dabei ist für m und n zu setzen:

v (m/s)	m	n
$\begin{array}{c} 0 & - & 240 \\ 240 & - & 295 \\ 295 & - & 375 \\ 375 & - & 419 \\ 419 & - & 550 \\ 550 & - & 800 \\ 800 & - & 1000 \end{array}$	$\begin{array}{c} 0,0140\\ 0,5834\cdot 10^{-4}\\ 0,6709\cdot 10^{-9}\\ 0,9404\cdot 10^{-4}\\ 0,0394\\ 0,2616\\ 0,7130\end{array}$	2 3 5 3 2 1,7 1,55

Chapel - Vallier - Scheve - Hojel geben an:

 $0 < v < 300 \text{ m/s}: \Re = c \cdot 0,33814 \cdot v^{2,5} \cdot 10^{-5}$ $300 < v < 330 \text{ m/s}: \Re = c \cdot 0,21962 \cdot v^{5} \cdot 10^{-11}$ $330 < v < 1000 \text{ m/s}: \Re = c \cdot 0,125 \cdot (v - 263) \text{ (Chapelsche Gerade);}$ dabei ist zu setzen:

$$c = rac{10^4 \cdot R^2 \cdot \delta \cdot i \cdot g}{1,206 \cdot P \cdot 9,81}.$$

d) Luftwiderstand und Lufttemperatur

In den vorangehenden Entwicklungen war die Temperatur der vom fliegenden Geschoß durcheilten Lufthülle nur insofern berücksichtigt worden, als sie in das Luftgewicht oder die Luftdichte eingeht. Tatsächlich wirkt sich aber die Lufttemperatur auch noch in anderer Weise auf den Luftwiderstand aus. Statt von der Lufttemperatur zu sprechen, können wir auch die jeweilige Schallgeschwindigkeit in der das Geschoß umgebenden Lufthülle heranziehen, da die Schallgeschwindigkeiten s_1 und s_2 in zwei Luftmedien mit den absoluten Temperaturen T_1 und T_2 in der Beziehung

$$(30) s_1: s_2 = \sqrt{\overline{T_1}}: \sqrt{\overline{T_2}}$$

zueinander stehen.

Athen, Ballistik

33

Eine qualitative Betrachtung möge zur Erläuterung dienen: Denkt man sich einen Stempel in einer Röhre stoßweise vorwärtsbewegt, so entsteht bei jedem Stoß eine Luftverdichtungswelle, die ihren Ursprung am Stempel hat und sich mit der Schallgeschwindigkeit s fortbewegt. Ähnlich ist es beim bewegten Geschoß: von der Geschoßspitze gehen kontinuierlich Luftverdichtungswellen aus, während sich am Geschoßende Luftverdünnungswellen bilden. Ist die Geschoßgeschwindigkeit kleiner als die Schallgeschwindigkeit, so eilen die Verdichtungswellen dem Geschoß voraus, ist sie größer, so staut sich, da nunmehr das Geschoß den Verdichtungswellen vorauseilt, an der Geschoßspitze die Luft: eine Widerstandsvergrößerung ist die Folge. Dies erklärt auch qualitativ die beiden oben besprochenen Geschoßarten: bei Geschwindigkeiten, die kleiner als die Schallgeschwindigkeit sind, verwendet man oft die tropfenförmige Flügelmine, da sich die am Geschoß vorbeiströmende Luft dieser Form am besten anschmiegt; bei Überschallgeschwindigkeiten dagegen ist zum besseren Durchdringen der gestauten Luft die spitze Geschoßform die günstigste. Schon Mach(48) hat darauf hingewiesen, daß die "Kopfwelle" des Ge-

Abb. 7. Einhüllende der Schallwellen

the "Ropiweile" des Geschosses zur Geschwindigkeitsmessung herangezogen werden könnte. Denn befand sich das Geschoß mit der Geschwindigkeit v vor 0, 1, 2, 3, ... Sekunden nacheinander in I, II, III, ... (Abb. 7), so hatte es jeweils die Strekken x, (x-v), (x-2v),... zurückgelegt; die von I, II, III, ... ausgehenden Verdichtungswellen haben dann in derselben

Zeit die Wege 0, s, 2s, ... zurückgelegt. Infolgedessen ist der halbe Öffnungswinkel α der Wellenenveloppe gegeben durch

(31)
$$\sin \alpha = \frac{s}{v}, \quad d. h.$$
 $v = s \cdot \operatorname{cosec} \alpha$

Jedenfalls erkennt man, daß bei der Betrachtung des Luftwiderstandes die Fälle v < s und v > s auseinanderzuhalten sind*; wegen (30) muß dann auch die Lufttemperatur eine bestimmte Rolle spielen.

Es hat sich in der Praxis mit der Verfeinerung der Meßmethoden gezeigt, daß die theoretisch berechneten Flugbahnen eines Geschosses selbst bei Berücksichtigung der Luftgewichtsabnahme mit der Höhe nicht mit den photogrammetrisch aufgenommenen, tatsächlichen Flugbahnen übereinstimmten, selbst dann nicht, wenn vorher mit den genauesten Mitteln die für dieses Geschoß gültige K(v)-Kurve bestimmt wurde. Die durch Geschoßrotation bewirkten Pendelungen konnten zur Erklärung nicht dienen. Erklärlich wurden die Abweichungen nur durch die Annahme eines anderen Widerstandes in höheren Luftschichten, als nach der Formel $\Re = c \cdot \delta(y) \cdot f(v)$ erwartet werden müßte. Die einzigen höhenveränderlichen Elemente sind aber Luftgewicht und Lufttemperatur. Daß mit letzterer die geschilderten Abweichungen erklärt werden können, wurde von verschiedenen Ballistikern vermutet und bestätigt. Danach muß der Luftwiderstand die Form (32) haben:

(32)
$$W = \bar{c} \cdot \delta(y) \cdot v^2 \cdot K_0\left(\frac{v}{s}\right) = \bar{c} \cdot \delta(y) \cdot v^2 \cdot K\left(v \cdot \frac{s_0}{s}\right) = \bar{c} \cdot \delta(y) \cdot v^2 \cdot K\left(v \cdot \left| \frac{T_0}{T(y)} \right| \right)$$

Die Abhängigkëit des Widerstandes von der Schallgeschwindigkeit und damit von der Temperatur war übrigens nach den vorangehenden qualitativen Betrachtungen zu erwarten. — Schon 1883 soll Sarrau (Frankreich) darauf aufmerksam gemacht haben. In Deutschland hat wohl Prandtl⁽⁵⁰⁾ als erster diese Verhältnisse festgestellt. Auf Grund der Weltkriegserfahrungen gab Darrieus⁽⁴⁹⁾ (Frankreich) eine einleuchtende Erklärung für Formel (32). Er schließt folgendermaßen: Man denke sich das gleiche Geschoß in zwei Luftschichten L_1 und L_2 fliegend, die beide gleiche Luftdichte, aber verschiedene Temperaturen (und Schallgeschwindigkeiten) T_1 und T_2 bzw. s_1 und s_2 haben. Nach der kinetischen Gastheorie ist in beiden Medien die mittlere freie Weglänge der Luftmolekeln gleich, während die mittleren Molekulargeschwindigkeiten w_1 bzw. w_2 im Verhältnis $w_1: w_2 = s_1: s_2 = i T_1: i ? T_2$ zu-* Für v < s wird sin a > 1; a hat dann also keinen reellen Wert mehr. einander stehen. In beiden Luftschichten werden gleichviel Luftmolekeln von dem fliegenden Geschoß getroffen, wenn die entsprechenden Geschoßgeschwindigkeiten v_1 und v_2 im Verhältnis $w_1: w_2 = v_1: v_2$, d. h. $v_1^2: v_2^2 = T_1: T_2$ stehen; diese Forderung ist nötig, da bei konstanter Temperatur offenbar die gleiche Anzahl getroffener Moleküle gleichen Widerstand bedeutet. Die von den fliegenden Geschossen an die getroffenen Moleküle abgegebenen Energiemengen verhalten sich wie $v_1^2: v_2^2$; das ist dann aber auch das Verhältnis der in L_1 und L_2 auf das Geschoß ausgeübten Widerstände W_1 bzw. W_2 . Die Beziehung $W_1: W_2 = v_1^2: v_2^2$ besteht jedoch dann, und nur dann, wenn W die allgemeine Form (32) hat. Eine strengere Ableitung der Form (32) hat Langevin⁽⁶³⁾ mit Hilfe von Ähnlichkeitsbetrachtungen aus den aerodynamischen Grundgleichungen durchgeführt.

Übrigens läßt sich (32) auch durch Dimensionsbetrachtungen gewinnen, wie es Vahlen⁽⁴⁾ gezeigt hat. Hat man nämlich außer v, q, δ (vgl. S. 17) noch *s* zur Verfügung, so lassen sich aus diesen 4 Faktoren nur der durch (4) bestimmte dimensionslose Quotient

$$rac{W}{q\cdot\delta\cdot v^2}-\mu$$

und außerdem das dimensionslose Verhältnis $\frac{v}{s}$ bilden. Das wirkliche Gesetz für W kann also nur zwischen diesen beiden Fällen liegen, d. h. es muß gelten

$$W = q \cdot \delta \cdot v^2 \cdot \mu \left(rac{v}{s}
ight)$$
 ,

womit wieder die in (32) gegebene Form erscheint.

Es soll an dieser Stelle noch vermerkt werden, daß man für T_0 im allgemeinen den Wert $T_0 = 283^{\circ}$ abs. (d. h. +10° C) festzulegen pflegt.

e) Zentrifugalkraft und Corioliskraft

Wird die Geschoßbewegung bei rotierender Erde betrachtet, so treten zwei weitere Kräfte in Erscheinung, die bei Fernbahnen nicht vernachlässigt werden dürfen. Die eine ist die Zentrilugalkraft, die sich mit der Schwerkraft zu einer Resultierenden, der "scheinbaren" Schwerkraft zusammensetzt. Befindet sich der Nullpunkt des bereits eingeführten Koordinatensystems (x, y, z),
(§ 1 a), an einem Ort O der Erdoberfläche, und ist der senkrechte Abstand E eines Punktes P(x, y, z) von der Umdrehungsachse der Erde E = E(x, y, z), so greift im Punkte P daher die Zentrifugalbeschleunigung $E(x, y, z) \cdot n^2$ an, wo *n* die Umdrehungsgeschwindigkeit der Erde bedeutet $\left| n = \frac{2\pi}{24 \cdot 60 \cdot 60} \right|$ $= 0,000073 s^{-1}$, so daß als Korrektur für die "scheinbare" Schwerkraft die Komponente von $n^2 \cdot E(x, y, z)$ verbleibt. Die Zerlegung von E in die Komponenten E_x , E_y , E_z für die Achsenrichtungen x, y, z führen wir hier nicht durch (vgl. dazu Vahlen⁽⁴⁾). - Die Corioliskraft ist die zweite infolge der Erdumdrehung zu berücksichtigende Kraft. Betrachtet man nämlich einen Punkt P mit der "Relativgeschwindigkeit" v_r in einem System S, das seinerseits irgendeine Bewegung mit der "Führungsgeschwindigkeit" v. ausführt, dann ist zwar immer die Absolutgeschwindigkeit dieses Punktes P die Resultierende aus v_r und v_r , dagegen ist die Absolutbeschleunigung von P die Resultierende aus der Führungsbeschleunigung des Systems S, der Relativbeschleunigung von P in S und einer weiteren Beschleunigung: der Coriolis beschleunigung. Diese ist gleich dem doppelten Produkt aus der Winkelgeschwindigkeit des Systems S und der zur momentanen Drehachse von S senkrechten Komponente von v_r . Die Coriolisbeschleunigung steht senkrecht auf v_r und der monentanen Drehachse; sie wirkt ablenkend auf vim Sinne der Drehung. Hat man also ein Koordinatensystem (X, Y, Z), dessen Z-Achse mit der Erdachse zusammenfällt, so lauten die Flugbahngleichungen bei ruhender Erde als Funktionen der Flugzeit t: X = X(t), Y = Y(t), Z = Z(t). Die Komponenten der Corioliskraft sind nach dem Obigen ($-2n \cdot \dot{Y}$, $+2n \cdot \dot{X}$, 0), so daß die Flugbahn bei rotierender Erde näherungsweise gegeben ist durch

$$\ddot{\overline{X}}(t) = -2n \cdot \dot{Y}(t) + \ddot{X}(t); \quad \ddot{\overline{Y}} = 2n \cdot \dot{X}(t) + \ddot{Y}(t); \quad \ddot{\overline{Z}}(t) = \ddot{Z}(t).$$

Zunächst ist Z(t) = Z(t), d. h. in Richtung der Erdachse wird die Bewegung des Geschosses durch die Corioliskraft nicht verändert. Die Integration der Gleichungen für \overline{X} und \overline{Y} bietet keine Schwierigkeiten. Wir kommen darauf später zurück.

f) Poissoneffekt und Magnuseffekt

Die beiden hier zu besprechenden Erscheinungen, die als Folge der Geschoßrotation auftreten, sind außerordentlich verwickelter Art und sollen an dieser Stelle nur der Vollständigkeit halber ohne lange theoretische Erörterung genannt werden. Auf manche mit ihnen zusammenhängende Fragen wird später zurückzukommen sein. Bei den folgenden Ausführungen nehmen wir an, daß die Geschoßspitze stets oberhalb der Flugbahntangente liege.

Der Poissoneffekt, auch Polsterwirkung genannt, beruht darauf, daß sich auf der Vorderseite des Geschosses eine Art Kissen von zusammengepreßter Luft bildet, während auf der Rückseite eine Luftverdünnung eintritt. Durch die unterschiedliche Reibung auf beiden Seiten rollt das Geschoß also gleichsam wie auf einem Polster im allgemeinen nach rechts ab, wenn es Rechtsdrall hat.

Der Magnuseffekt⁽⁵³⁾ (⁵⁴⁾ entsteht dadurch, daß das Geschoß die vorbeistreichenden Luftteilchen im Sinne seiner Rechtsrotation mitreißt. Die Geschoßachse liegt oberhalb der Flugbahntangente (Strömungsrichtung der Luft). In Richtung des fliegenden Geschosses gesehen, wird sich also auf dessen linker Seite ein luftverdünnter, auf der rechten Seite jedoch ein luftverdichteter Raum bilden. Der so entstehende Druckunterschied auf beiden Seiten muß im allgemeinen in einer Linksabweichung des Geschosses in Erscheinung treten.

Es kann jedoch auch der Fall eintreten, daß die geschilderten Abweichungen nach der entgegengesetzten Seite erfolgen, nämlich dann, wenn die Geschoßspitze unterhalb der Bahntangente liegt.

§ 2. Theoretische Ableitung eines Widerstandsgesetzes

Wenn es bisher auch noch nicht gelungen ist, eine befriedigende Theorie für den Luftwiderstand zu erbringen, so wollen wir trotzdem an dieser Stelle noch eine theoretische Betrachtung anstellen, die eine mathematische Formulierung des Luftwiderstandsgesetzes ermöglicht. Die folgende Ableitung beruht auf den Entwicklungen, die H. Lorenz⁽¹⁵⁾ für Schiffskörper angestellt und später auf Geschosse ausgedehnt hat. Es ist klar, daß beim Geschoßflug Energie abgegeben wird einerseits bei Entstehung der Luftverdichtungswellen, andererseits aber auch zur Überwindung der Zähigkeit der am Geschoß vorbeistreichenden Luft. Entsprechend besteht der Luftwiderstand W aus 2 Teilen: einem Anteil W_1 , der seine Ursache in der Wellenbildung hat und einem Anteil W_2 , der durch die Reibung und Wirbelbildung entsteht.

Den vom fliegenden Geschoß getroffenen und in Schwingung versetzten Luftteilchen wird eine Geschwindigkeit aufgezwungen, die am Geschoßkörper etwa mit der Geschoßgeschwindigkeit v übereinstimmt, nach außen aber nach einem exponentiellen Gesetz

(33) $v^* = v \cdot e^{x \cdot (a^* - r^*)}$ (r = senkr. Abstand von der Geschoßachse)

abnimmt; hierin bedeutet \varkappa einen vom Luftmedium abhängigen Faktor, während a gleich dem halben Geschoßkaliber ist. Bei der Vorwärtsbewegung um die Strecke dx wird bei einem spezifischen Luftgewicht δ die Arbeit

$$d (d L_1) = rac{\delta}{2g} \cdot v^{*2} \cdot r \cdot dr \cdot d\varphi \cdot dx$$

geleistet, wo $r \cdot dr \cdot d\varphi$ das Flächenelement der Normalebene zur Geschoßachse ist. Integration über die Normalebene außerhalb des Geschoßquerschnitts ergibt, da Kraft = Arbeit: Weg ist:

(34)
$$W_{1} = \frac{dL_{1}}{dx} = \frac{\delta}{2g} \cdot \bar{v}^{2} \cdot \int_{o}^{2\pi} \int_{a}^{\infty} r \cdot dr \cdot e^{\varkappa \cdot (a^{2} - r^{2})} \cdot d\varphi = \varkappa_{1} \cdot q \cdot \bar{v}^{2},$$

wo v^2 einen Mittelwert bedeutet, auf dessen Bestimmung noch zurückzukommen ist. Andererseits wird auf dem Wege dx zur Überwindung der Zähigkeit durch das Geschoß näherungsweise die Arbeit

$$d(dL_2) = \mu \cdot v \cdot dx \cdot dl$$
, d. h. $dL_2 = \mu \cdot \int_0^l v \cdot dx \cdot dl$

geleistet, so daß $W_2 = \frac{dL_2}{dx} \approx \mu \cdot v \cdot l$ wird. Hierin ist μ ein konstanter Faktor, der die Zähigkeit charakterisiert, während l die Geschoßlänge bedeutet. Der gesamte Widerstand ist also gegeben durch

(35)
$$W = W_1 + W_2 = \varkappa_1 \cdot q \cdot \tilde{v}^2 + \mu \cdot l \cdot v.$$

Hierin ist \tilde{v}^2 noch näher zu bestimmen: \tilde{v} setzt sich zusammen aus der Axialgeschwindigkeit v, der durch den Drall hervorgerufenen Rotationsgeschwindigkeit $v \cdot \operatorname{tg} \zeta$ ($\zeta =$ Drallwinkel) und dem Mittelwert u der infolge der Luftverdichtungswellen periodisch veränderlichen Radialkomponente in Richtung von r. Somit gilt

(36)
$$\bar{v}^2 = v^2 \cdot (1 + \mathrm{tg}^2 \zeta) + u^2,$$

wo u sich folgendermaßen bestimmt: Ist ξ der radiale Ausschlag eines Luftteilchens aus der Ruhelage, so gehorcht ξ einer Differentialgleichung für die erzwungene, gedämpfte Schwingung

(37)
$$\ddot{\xi} + \varepsilon \cdot \dot{\xi} + a^2 \cdot \xi = \gamma,$$

in der ε einen Dämpfungsfaktor, α die Frequenz der freien Schwingung ($\gamma = 0$) und γ die durch Gleiten auf der gekrümmten Geschoßfläche verursachte radiale Zwangsbeschleunigung* der Luftteilchen bedeuten. Ist *s* die Fortpflanzungsgeschwindigkeit der Wellen mit der Wellenlänge λ , so gilt bekanntlich $\lambda = \frac{2\pi \cdot s}{a}$. Wegen der annähernd kreisförmigen, d. h. relativ zum fliegenden Geschoß sinusförmigen Bewegung der Luftteilchen gilt also

(38)
$$\gamma = v^2 \cdot (A \cdot \cos \omega t + B \cdot \sin \omega t)$$
, we offen bar $\omega = \frac{2\pi \cdot v}{\lambda}$,

während damit ξ die allgemeine Form

(39)
$$\xi = \psi(a, \, \omega, \, v) \cdot \cos \omega t + \chi(a, \, \omega, \, v) \cdot \sin \omega t$$

annimmt. Führt man (38) und (39) in (37) ein, so folgt durch Vergleich der Faktoren von sin bzw. cos

(40)
$$\begin{pmatrix} \varphi = v^2 \cdot \frac{A \cdot (a^2 - \omega^2) - B \cdot \varepsilon \cdot \omega}{(a^2 - \omega^2)^2 + \varepsilon^2 \cdot \omega^2}; \\ \chi = v^2 \cdot \frac{B \cdot (a^2 - \omega^2) + A \cdot \varepsilon \cdot \omega}{(a^2 - \omega^2)^2 + \varepsilon^2 \cdot \omega^2}. \end{cases}$$

Die Radialgeschwindigkeit der schwingenden Luftteilchen ist nach (39) gegeben durch die Ableitung $\xi = \omega \cdot [\chi \cdot \cos \omega t - \psi \cdot \sin \omega t]$, so daß das Mittel

^{*} Die Luftteilchen führen näherungsweise eine Kreisbewegung aus, so daß γ als Zentrifugalbeschleunigung $\left(\gamma = \frac{\iota^2}{\varrho}\right)$ gedeutet werden kann.

$$u^2 = \dot{\xi}^2_{\text{Mittel}} = \omega^2 \cdot \frac{\psi^2 + \chi^2}{2} = \frac{\omega^2 \cdot v^4}{2} \cdot \frac{A^2 + B^2}{(a^2 - \omega^2)^2 + \varepsilon^2 \cdot \omega^2}$$

wird. Mit den Abkürzungen $\varkappa_2 = \frac{\varkappa_1}{\cos^2 \zeta}$; $c^2 = \frac{\varepsilon^2 \cdot \lambda^2}{4\pi^2}$ und $\nu = \frac{A^2 + B^2}{8\pi^2} \cdot \lambda^2 \cdot \cos^2 \zeta$ nimmt schließlich der Widerstand *W*, wenn noch $\omega = \frac{2\pi \cdot \nu}{\lambda}$ und $\alpha = \frac{2\pi \cdot \delta}{\lambda}$ eingeführt werden, die Form

(41)
$$W = \mu \cdot l \cdot v + \varkappa_{2} \cdot q \cdot v^{2} \cdot \left| 1 + \frac{\nu \cdot r^{4}}{(s^{2} - r^{2})^{2} + c^{2} \cdot r^{2}} \right|$$
$$= \mu \cdot l \cdot v + \varkappa_{2} \cdot q \cdot v^{2} \cdot \left[1 + \frac{\nu \cdot \left(\frac{v}{s}\right)^{4}}{\left(1 - \frac{r^{2}}{s^{4}}\right)^{2} + \left(\frac{c}{s}\right)^{2} \cdot \frac{r^{2}}{s^{4}}} \right]$$

an. Diese allgemeine Form bleibt auch bestehen, wenn $\zeta = 0$, d. h. wenn das Geschoß keine Drallbewegung ausführt. Natürlich ändern sich dann die Konstanten \varkappa_2 und ν ; von ν weiß man aber, daß es von der Geschoßform abhängig ist, da A und B durch die Krümmung des Geschosses bestimmt sind.

Stellt man $\frac{W_1}{\iota^2}$ graphisch dar, so nimmt diese Kurve die in Abb. 8 dargestellten Formen an, je nach der Wahl der Konstanten \varkappa_2 , ν und c^2 . Man erkennt aber ohne weiteres den charakteristischen

Abb. 8. Abhängigkeit des Widerstandes von der Geschoßform (Lorenz)

Verlauf der bereits oben besprochenen K(v)-Kurve. — Durch Differentiation von $\frac{W_1}{v^2}$ nach v stellt man unschwer fest, daß diese Kurve die horizontale Gerade $\frac{W_1}{v^2} = \varkappa_2 \cdot q$ bei v = 0 berührt, daß sie sich für $v = \infty$ asymptotisch der Horizontalgeraden $\frac{W_1}{v^2} = \varkappa_2 \cdot q \cdot (1 + v)$ nähert und daß sie schließlich für $v_1^2 = \frac{2 s^4}{2 s^2 - c^2}$, $(v_1^2 > s^2)$, einen Höchstwert erreicht, während die obere Asymptote im Punkt $v_2^2 = \frac{s^4}{2 s^2 - c^2} = \frac{v_1^2}{2}$ geschnitten wird. Beispiel: In der K(v)-Funktion von Siacci ist näherungsweise $K(0) = \binom{W_1}{v} = \varkappa_1 q = 120$, 10 = 6, d h, $\varkappa = \frac{120}{2}$, 10 = 6. Former

$$\begin{split} K(0) &= \left(\frac{W_1}{v^2}\right)_0 = \varkappa_2 \cdot q = 120 \cdot 10 - 6, \quad \text{d. h.} \quad \varkappa_2 = \frac{120}{q} \cdot 10 - 6. \quad \text{Ferner} \\ \text{ist} \quad v_1^2 = 518^2, \quad \text{somit} \quad c^2 = 2s^2 \cdot \left[1 - \left(\frac{s}{518}\right)^2\right]. \quad \text{Schließlich ist} \\ \left(\frac{W_1}{v^2}\right)_{\infty} \sim 220 \cdot 10 - 6 = \varkappa_2 \cdot q \cdot (1 + \nu), \quad \text{d. h.} \quad \nu = 0.8333. \quad \text{Aus} \; v_1^2 \; \text{bestimmt} \\ \text{man} \; v_2 = 366 \; \text{m/s.} \end{split}$$

Lorenz geht nun weiter und zeigt, daß bei Spitzgeschossen mit dem halben Öffnungswinkel ϑ an der kegelförmigen Spitze angesetzt werden kann

(42)
$$v = 2\sin\vartheta; \quad c^2 = s^2 \cdot (\sin\vartheta + \sin^2\vartheta) \quad (Abb. 8).$$

Das 1. Glied in (41) zeigt an, daß bei kleinen Geschwindigkeiten W merklich linear mit v verläuft.

Es kam uns darauf an, in den vorangehenden Entwicklungen zu zeigen, daß der Teil K(v) der Widerstandsfunktion durch die Schallgeschwindigkeit *s* maßgebend bestimmt wird. Aus Formel (41) erkennt man in der Tat, daß für K(v) richtig $K_0\left(\frac{v}{s}\right)$ gesetzt werden muß, wie es schon in (32) auf anderem Wege gezeigt war. Darüber hinaus sollte aber gezeigt werden, daß es einen Formfaktor, der rein multiplikativ in den Widerstand eingeht, nicht geben kann. In (41) ist v eine durch die Geschoßform bestimmte Konstante, die in $K_0\left(\frac{v}{s}\right)$ implizit enthalten ist*.

^{*} Darüber hinaus enthält ν auch den Geschoßquerschnitt q, d. h. das Kaliber 2 R, womit der Kritzingersche Kaliberfaktor eine gewisse Berechtigung erhält.

Die hier theoretisch abgeleitete Widerstandsfunktion ist ein aussichtsreicher Ausgangspunkt für genauere Entwicklungen, die noch besser, als es bei dieser Form auf Grund einschneidender Näherungsannahmen der Fall sein kann, die tatsächlichen Luftwiderstandsverhältnisse wiedergeben. — Wie man auf Grund von Versuchen die in (41) enthaltenen Konstanten numerisch bestimmen kann, hat Falkenhagen⁽⁵²⁾ gezeigt. — Es gibt noch eine Reihe weiterer theoretisch entwickelter Widerstandsfunktionen; ohne näher darauf einzugehen seien genannt die diesbezüglichen Arbeiten von Prandtl⁽⁵⁰⁾, Sommerfeld⁽⁹⁵⁾, Lamothe⁽⁵¹⁾, Ferrari^(52a) u. a.

§ 3. Die Differentialgleichungen der Bewegung

Nach der Darlegung der beim Geschoßflug wirksamen Kräfte sind wir nunmehr in der Lage, die Differentialgleichungen der Bewegung aufzustellen. Wir betrachten die Geschoßbahn in dem bereits definierten Koordinatensystem (x, y, z), wo x in die horizontale Schußrichtung und y senkrecht nach oben zeigt, während zauf der (x, y)-Ebene senkrecht steht und, in Schußrichtung gesehen, nach rechts positiv gezählt wird. Bezüglich der wirkenden Kräfte nehmen wir zunächst folgende vereinfachten Verhältnisse an: 1. Die Erde befinde sich in Ruhe; dadurch fallen Einflüsse der Zentrifugalkraft und Corioliskraft fort. 2. Die Erde werde als eben angesehen; für die meisten Aufgaben der Ballistik ist das gestattet. Die Richtung der Schwerkraft wird dadurch konstant, und die Komponente g_x fällt weg, so daß nur g_u mit y veränderlich ist.

Beispiel. Bei einer Schußweite von 15 km beträgt der Winkel zwischen den Richtungen der Schwerkraft im Anfangs- und Endpunkt der Bahn $\sim 8'$. Die x-Komponente der Beschleunigung durch die Schwerkraft ist dann an der Erdoberfläche 0,02 m/s²; das ist aber gegenüber der Verzögerung durch den Luftwiderstand ($\Re \sim 8.3 \text{ m/s}^2$ bei einem Geschoß von 15 kg Gewicht) noch zu vernachlässigen.

3. Magnus- und Poissoneffekt werden als verschwindend angesehen. 4. Schließlich werde noch von der weiter unten besprochenen Drallbewegung des Geschosses abgesehen. Die Veränderungen der Flugbahn durch die hier besprochenen 4 Einflüsse werden wir später gesondert betrachten, da sie für einen sehr großen Teil der Flugbahnaufgaben zu vernachlässigen sind.

Unter den gemachten Voraussetzungen verläuft also die Be-

wegung des Geschosses in einer auf der Erdoberfläche senkrecht stehenden Ebene (x, y). Wir bezeichnen hier und im folgenden die Flugbahnelemente mit den nachstehenden Abkürzungen (Abb. 9): x und y = Koordinaten eines beliebigen Bahnpunktes P;

Abb. 9. Flugbahn und Flugbahnelemente

 $\vartheta = \operatorname{arc} \operatorname{tg}\left(\frac{d \ y}{d \ x}\right) =$ gegen den Uhrzeiger positiv gezählter Neigungswinkel zwischen Flugbahntangente und Horizontale; t = Flugzeit vom Anfangspunkt 0 der Bahn bis $P; \ v =$ Bahngeschwindigkeit im Punkte $P; \varphi =$ Abgangswinkel; $\omega =$ spitzer Neigungswinkel der Bahntangente im Endpunkt E der Bahn*, für den y zum zweiten Male Null wird; X = Schußweite = Entfernung $OE; \ T =$ Flugzeit von 0 bis $E; \ v_0 =$ Anfangsgeschwindigkeit.

Die in die x- bzw. y-Richtung fallenden Komponenten der Verzögerung \Re durch den Luftwiderstand W sind $\Re \cdot \cos \vartheta$ bzw. $\Re \cdot \sin \vartheta$. Als weitere Beschleunigung tritt für die y-Richtung noch die Schwerebeschleunigung g(y) hinzu, so daß die Beschleunigungskomponenten $\ddot{x} = \frac{d^2 x(t)}{dt^2}$ bzw. $\ddot{y} = \frac{d^2 y(t)}{dt^2}$ den Differentialgleichungen

(43)
$$\begin{vmatrix} \ddot{x} = -\Re \cdot \cos \vartheta &= -\dot{x} \cdot \frac{\Re}{v}; \\ \ddot{y} = -g(y) - \Re \cdot \sin \vartheta = -g(y) - \dot{y} \cdot \frac{\Re}{v} \end{vmatrix}$$

genügen müssen, wobei $\frac{d x}{d t} = \dot{x} = v \cdot \cos \vartheta$ und $\frac{d y}{d t} = \dot{y} = v \cdot \sin \vartheta$

^{*} Die Waagerechte durch E (und 0) heißt allgemein "Mündungswaagerechte".

zu setzen sind. Die Anfangsbedingungen dieser Differentialgleichungen sind für $t = 0: \dot{x}(0) = v_0 \cdot \cos \varphi; \quad \dot{y}(0) = v_0 \cdot \sin \varphi;$ x(0) = y(0) = 0. Für die Verzögerung \Re kann im allgemeinsten Falle ein Ausdruck der Form (32) geschrieben werden, so daß die **1. Form der Bewegungsgleichungen** in der Gestalt

(44)
$$\ddot{x} = -\dot{x} \cdot c \cdot \delta(y) \cdot v \cdot K\left(v \cdot \left| \frac{T_{u}}{T(y)} \right); \quad \frac{dx}{dt} = \dot{x};$$
$$v^{2} = \dot{x}^{2} \perp \dot{y}^{2};$$
$$\ddot{y} = -g - \dot{y} \cdot c \cdot \delta(y) \cdot v \cdot K\left(v \cdot \left| \frac{T_{u}}{T(y)} \right); \quad \frac{dy}{dt} = \dot{y}$$

erscheint. In diesem System von Differentialgleichungen nennt man c den ballistischen Beiwert. Er ist je nach der Form des verwendeten Luftwiderstandsgesetzes verschieden definiert.

Beispiel. Im Gesetz von Siacci ist $c = \frac{1000 \cdot i \cdot (2 R)^2}{1.206 \cdot P}$; (2 R = Kaliber in m, P = Geschoßgewicht in kg). Für y = 0, R = 5 cm, P = 15 kg, i = 1, v = 500 m/s wird also c = 0.5528 und somit

$$\Re = c \cdot \delta_0 \cdot v^2 \cdot K(v) = 58,67 \text{ m/s}^2, \ \delta_0 = 1,22 \text{ kg/m}^3.$$

Das Kruppsche Gesetz schreibt $c = \frac{\pi \cdot R^2 \cdot i \cdot g}{1,22 \cdot P}$ (2 *R* in cm, *P* in kg) vor; für dieselben Größen *y*, *P*, *i*, *v*, *R* wird c = 42,10 und somit

$$\Re = 51,34 \text{ m/s}^2.$$

Mit dem Tangentenneigungswinkel ϑ als der unabhängigen Variablen in den Differentialgleichungen entsteht die 2. Form der Bewegungsgleichungen

(45)
$$\frac{\frac{d(v\cos\vartheta)}{d\vartheta} = \frac{c}{g} \cdot \delta(y) \cdot v^3 \cdot K\left(v \cdot \frac{T_0}{T(y)}\right)}{\frac{dy}{d\vartheta} = -\frac{v^2}{g} \cdot tg \vartheta; \qquad \frac{dx}{d\vartheta} = -\frac{v^2}{g}; \qquad \text{II. Form} \\ \frac{dt}{d\vartheta} = -\frac{v}{g\cos\vartheta}$$

Diese Form entsteht dadurch, daß man die 1. Gleichung von

(44) mit \dot{y} , die 2. mit (- \dot{x}) multipliziert und dann beide addiert. Da $\ddot{y} \cdot \dot{x} - \ddot{x} \cdot \dot{y}$ $\dot{r}^2 \cdot \frac{d}{dt} \left(\frac{\dot{y}}{x}\right) = \dot{x}^2 \cdot \frac{d}{dt} (\operatorname{tg} \vartheta) = \dot{r}^2 \cdot \frac{d}{dt} \frac{\partial}{\partial t} \cdot \frac{1}{\cos^2 \vartheta}$ ist, folgt unschwer

(45 a)
$$\frac{d \vartheta}{d t} = -\frac{g \cdot \cos \vartheta}{v}$$

und damit (45).

In (45) stellen die erste und zweite Gleichung ein gekoppeltes System von Differentialgleichungen für v und y als Funktionen der unabhängigen Veränderlichen ϑ dar. Nach Lösung dieses Systems sind x und t, wie (45) zeigt, durch Quadraturen lösbar.

Die oft besonders für numerisch-graphische Rechnungen sehr geeignete 3. Form der Bewegungsgleichungen nimmt (45) durch die Substitutionen sin $\vartheta = \mathfrak{Tang}z$, $v = e^u$ an:

(46)
$$\begin{aligned} \frac{d u}{dz} &= \Im \operatorname{ang} z + \frac{c}{g} \cdot \delta(y) \cdot e^{2u} \cdot K\left(e^{u} \cdot \left| \frac{\overline{T_{v}}}{T(y)} \right) \\ \frac{d y}{dz} &= -\frac{e^{2u}}{g} \cdot \Im \operatorname{ang} z; \quad \frac{d x}{dz} &= -\frac{e^{2u}}{g} \cdot \frac{1}{\operatorname{Uoj} z}; \\ \frac{d t}{dz} &= -\frac{e^{u}}{g} \end{aligned}$$
 III. Form

In vielen Fällen begnügt man sich mit vereinfachten Formen dieser drei Abarten der Bewegungsgleichungen. Für nicht zu große Höhenbereiche kann die Temperatur T(y) als konstant angesehen bzw. durch einen konstanten Mittelwert ersetzt werden. Dasselbe gilt für das Luftgewicht $\delta(y)$. Wenn man beide als konstant voraussetzt, entsteht aus (45) die folgende Sonderform, die auch als **ballistische Hauptgleichung** bezeichnet wird:

(47)
$$\frac{d(v \cdot \cos \vartheta)}{d \vartheta} - \frac{c^*}{g} \cdot v \cdot f(v) \qquad (c^* = c \cdot \delta_m) \quad \begin{array}{c} \text{Ballistische} \\ \text{Hauptgleichung.} \end{array}$$

In dieser Differentialgleichung treten nur v und ϑ auf. Deutet man v und ϑ als die Polarkoordinaten einer Kurve $v = v(\vartheta)$, so stellt diese nichts anderes als den Hodographen der Flugbahn dar, weshalb (47) auch die "Hodographengleichung der äußeren Ballistik" genannt wird.

Allgemein ist zu den vorstehend aufgeführten Formen der Differentialgleichungen der Bewegung zu sagen, daß ihre Integration große mathematische Schwierigkeiten bereitet. Selbst die so einfach erscheinende Hodographengleichung (47) ist nur unter ganz bestimmten Voraussetzungen über die Widerstandsfunktion f(v)integrabel*. Man ist daher bis heute auf Näherungsmethoden, die im folgenden eingehender zu beschreiben sein werden, angewiesen.

Eine allgemeingültige Beziehung für den Krümmungsradius einer Flugbahn folgt aus der Beziehung (45a). Bekanntlich ist bei der Kreisbewegung Radius · Winkelgeschwindigkeit = Bahngeschwindigkeit. Infolgedessen gilt für den Krümmungsradius ϱ einer Flugbahn

$$\varrho \cdot \frac{d\,\vartheta}{d\,t} = v$$

d. h. wegen (45a)

(47 a)
$$\frac{v^2}{\varrho} = -g \cdot \cos \vartheta$$

Alle Flugbahnen haben in Punkten mit gleicher Geschwindigkeit und Tangentenneigung gleiche Krümmung; d. h. sie haben unabhängig von der Annahme eines speziellen Widerstandsgesetzes drei unendlich nahe Punkte gemeinsam.

§ 4. Erste Zusammenfassung (Kräfte und Bewegungsgleichungen)

1. Die Bahn des fliegenden Geschosses wird in erster Linie durch die Schwerebeschleunigung und die Luftwiderstandsverzögerung bestimmt.

2. Die Schwerebeschleunigung hat in unseren Breiten an der Erdoberfläche den Wert

$$g \approx 9,81 \text{ m/s}^2$$

* Dagegen kann man die Orthogonaltrajektorien zum Hodographen durch Quadratur bestimmen: Die Tangentenneigung des Hodographen ist $\frac{v \cdot d \vartheta}{d v} = \frac{g \cdot \cos \vartheta}{c^* \cdot f(v) + g \cdot \sin \vartheta}$. Somit gilt für die Orthogonaltrajektorien: $\frac{v \cdot d \vartheta}{d v} = -\frac{c^* \cdot f(v) + g \cdot \sin \vartheta}{g \cdot \cos \vartheta}$ oder $d(v \cdot \sin \vartheta) = -\frac{c^*}{g} \cdot f(v) \cdot dv$. Dies ist durch Quadratur lösbar.

48 Kap. I. Die wirksamen Kräfte. Die Bewegungsgleichungen

und nimmt mit der Höhe nach der Näherungsformel

$$g(y) = g(0) \cdot \left(1 - \frac{2y}{R}\right)$$

ab.

3. Die Luftwiderstandsverzögerung $c \cdot f(v)$ ist eine Funktion der Geschoßgeschwindigkeit und des ballistischen Koeffizienten c, der durch Form, Gewicht und Ausmaße des Geschosses bestimmt ist. In erster Näherung ist $c \cdot f(v)$ dem Quadrat der Geschwindigkeit proportional; bei Geschwindigkeiten bis zu etwa 200 m/s gilt das quadratische Widerstandsgesetz als genügend genau. Allgemeiner gilt

$$c \cdot f(v) = c \cdot v^2 \cdot K(v),$$

wobei K(v) charakteristisch für den Verlauf des Luftwiderstandes ist. Besondere Bedeutung haben das Kruppsche Widerstandsgesetz, das einheitliche Gesetz von Siacci, die Potenzgesetze in der Form $c_n \cdot v^n$, sowie die Zonenpotenzgesetze, die in verschiedenen Geschwindigkeitszonen mit von Zone zu Zone veränderlichen Geschwindigkeitspotenzen und Beiwerten gelten. Für strengere Rechnungen muß der Veränderlichkeit von Luftdichte, Luftdruck und Lufttemperatur mit der Höhe Rechnung getragen werden. Die Luftdichte geht multiplikativ in den Beiwert c ein, während K(v) durch

$$K\left(v \cdot \left| \frac{\overline{T_{0}}}{T(y)} \right)\right)$$

ersetzt werden muß. Bei Annahme einer konstanten mittleren Temperatur braucht nur die Höhenveränderlichkeit des Luftgewichts berücksichtigt zu werden. Bei Flughöhen bis zu 10000 m gilt die Everlingsche Formel

$$\delta(y) = \delta_0 \cdot e^{-0,000106 \cdot y} = \delta_0 \cdot 10^{-0,000046 \cdot y}$$

dann als gute Näherung. Als Normalwerte für T_0 bzw. δ_0 pflegt man 283° abs., bzw. 1,22 kg/m³ zu nehmen.

4. Bei Fernbahnen müssen auch die Einflüsse der Zentrifugal- und Corioliskraft, sowie bei Drallgeschossen der Magnus- und Poissoneffekt berücksichtigt werden.

5. Die Differentialgleichungen der Bewegung haben die Form

$$\begin{split} \ddot{x} &= -x \cdot c \cdot \delta(y) \cdot v \cdot K\left(v \cdot \left| \left| \frac{T_{0}}{T(y)} \right| \right); \\ \ddot{y} &= -g(y) - \dot{y} \cdot c \cdot \delta(y) \cdot v \cdot K\left(v \cdot \left| \frac{T_{0}}{T(y)} \right| \right). \end{split}$$

Als ballistische Hauptgleichung bezeichnet man die Differentialgleichung des Flugbahnhodographen $v = v(\vartheta)$:

$$\frac{d(v\cdot\cos\vartheta)}{d\vartheta} = \frac{c^*}{g}\cdot v\cdot f(v),$$

der bei Voraussetzung konstanter Temperatur und Luftdichte nach Lösung der Hauptgleichung die Flugbahnelemente durch bloße Quadraturen zu bestimmen gestattet.

6. Der Krümmungsradius einer Flugbahn bestimmt sich aus

$$|\varrho| = \frac{r^2}{g \cdot \cos \vartheta}$$

Er ist unabhängig von der Wahl des Luftwiderstandsgesetzes, so daß Bahnen mit gleichen v und ϑ drei unendlich nahe Punkte gemeinsam haben.

Kap. II. Der luftleere Raum. Allgemeine Flugbahneigenschaften. Ballistische Ähnlichkeit

§ 5. Ballistik im luftleeren Raum

a) Die Flugbahngleichungen und Flugbahnelemente

Einen ersten Einblick in den Mechanismus der Flugbahnbewegung erhalten wir, wenn wir zunächst den Luftwiderstand vernachlässigen. In Wirklichkeit darf man das natürlich nicht tun; denn die Verzögerung durch den Widerstand beträgt schon sehr bald ein Vielfaches der Schwerebeschleunigung, wie wir es in dem Beispiel auf S. 45 sahen.

Im luftleeren Raume ist eine Verzögerung R durch den Luftwiderstand nicht vorhanden. Infolgedessen geht (43) über in

(48)
$$\begin{cases} \ddot{x} = 0; & \text{mit den Anfangsbedingungen für } t = 0; \\ \ddot{y} = -g(y); & x(0) = y(0) = 0; & x(0) = v_0 \cdot \cos\varphi; \\ & y(0) = v_0 \cdot \sin\varphi. \end{cases}$$

Der Einfachheit halber nehmen wir zunächst auch g als konstant an. Dann hat (48) die Integrale

Athen, Ballistik

50 Kap. II. Luftleerer Raum. Flugbahneigenschaften. Ähnlichkeit

(49)
$$\begin{cases} \dot{x} = v_x = v \cdot \cos \vartheta = v_0 \cdot \cos \varphi; & x = v_0 \cdot \cos \varphi \cdot t; \\ \dot{y} = v_y = v \cdot \sin \vartheta = v_0 \cdot \sin \varphi - g \cdot t; \\ y = v_0 \cdot \sin \varphi \cdot t - \frac{1}{2} g \cdot t^2. \end{cases}$$

Diese Gleichungen besagen, daß die Geschoßflugbahn als Resultierende dreier Bewegungen aufgefaßt werden kann: 1. Aus einer gleichförmigen Horizontalbewegung mit der Geschwindigkeit $v_0 \cdot \cos \varphi$; 2. aus einer gleichförmigen Vertikalbewegung nach oben mit der Geschwindigkeit $v_0 \cdot \sin \varphi$ und 3. aus einer gleichförmig beschleunigten Vertikalbewegung nach unten mit der konstanten Beschleunigung g. — Andererseits kann die Geschoßbahn daher auch als Resultierende aus einer gleichförmigen Bewegung mit der Geschwindigkeit v_0 in Richtung der Anfangstangente der Flugbahn und aus einer gleichförmig beschleunigten Vertikalbewegung nach unten gedeutet werden. Die in Richtung der Anfangstangente verlaufende Bewegung ist gekennzeichnet durch

(50a)
$$\xi(t) = v_0 \cdot t,$$

wo ξ den nach t Sekunden erreichten Abstand des Punktes Q (Abb. 10) auf der Anfangstangente vom Nullpunkt 0 bezeichnet.

Abb. 10. Schwenken (Angelrutenprinzip)

In der gleichen Zeit wandert infolge der gleichförmig beschleunigten Bewegung Q senkrecht nach unten bis P. Mit $QP = \eta$ gilt dann

(50 b)
$$\eta(t) = \frac{g}{2} \cdot t^2.$$

Nach Elimination von t aus (50a) und (50b) folgt die Bahngleichung des Geschosses P im (ξ, η) -System zu

(50c)
$$\eta = \frac{g}{2v_0^2} \cdot \xi^2$$

Elimination von t aus den Gleichungen (49) ergibt die Bahngleichung in (x, y) als Parabelgleichung:

(51)
$$y = x \cdot \operatorname{tg} \varphi - \frac{g \cdot x^2}{2 \, v_0^2 \cdot \cos^2 \varphi}$$

Der Zusammenhang der schiefwinkligen Koordinaten (ξ, η) mit den rechtwinkligen (x, y) kann aus (49) und (50a u. b) leicht abgeleitet werden; man erhält

(52)
$$\begin{cases} \xi = \frac{x}{\cos \varphi}; \quad \eta = x \cdot \operatorname{tg} \varphi - y \quad \text{oder} \\ x = \xi \cdot \cos \varphi; \quad y = \xi \cdot \sin \varphi - \eta. \end{cases}$$

Das schiefwinklige Koordinatensystem läßt eine wichtige Eigenschaft der Flugbahnparabel des Vakuums erkennen: man denke sich ξ als starre Schiene drehbar in 0 befestigt; weiter sei Q auf ξ beweglich und halte die drehbar in Q angeordnete starre Schiene η , auf der P durch eine verschiebbare Kugel markiert werden kann. Legt man auf den beiden Schienen nun Q und P für eine bestimmte Flugzeit t gemäß (50a u. b) fest und bringt die Schiene ξ in eine solche Lage, daß ξ und x den Winkel φ einschließen, so nimmt P infolge der durch die eigene Schwere nach unten hängenden Schiene η die Lage ein, die das Geschoß bei der gegebenen Anfangsgeschwindigkeit v_0 und der Erhöhung φ nach t Sekunden erreicht haben würde. Mit Hilfe des geschilderten Mechanismus kann P also in jede Lage gebracht werden, die einer beliebigen Erhöhung φ entspricht. Schließlich kann man sich vorstellen, daß die "Verschwenkung" gleichzeitig für jeden Punkt der Flugbahnparabel durchgeführt wird; dann entstehen bei der Drehung von ξ um 0 nacheinander alle Flugbahnen mit allen Erhöhungen, die mit gleicher Anfangsgeschwindigkeit v_0 abgefeuert werden, d. h. alle "Flugbahnen der Schar (v_0)". Man nennt diese Art der Flugbahnschwenkung auch "Schwenken nach dem Angelruten-

51

prinzip., wobei dieser Name in Anlehnung an das Bild der Angelrute gewählt wurde. Diese Flugbahnschwenkung hat praktische Bedeutung; bei nicht zu großen Erhöhungs- und Schwenkwinkeln gilt sie auch im lufterfüllten Raume näherungsweise.

Beispiel. Ein Ziel liegt in x = 2000 m Entfernung in Mündungshöhe (y = 0). Die erforderliche Erhöhung sei 25°. Ein neues Ziel erscheint in derselben Horizontalentfernung, aber 200 m über dem alten. Nach (52) ist, da $\bar{\xi} = \xi$ und $\bar{\eta} = \eta : 2000 \cdot \text{tg } 25^\circ = 2000 \cdot \frac{\sin \bar{q}}{\cos 25^\circ} - 200$, d. h. $\bar{q} = 30,88^\circ$; and ererseits ist $\frac{2000}{\cos 25^\circ} = \frac{\bar{x}}{\cos \bar{q}}$. Daraus folgt wegen $\bar{q} = 30,88^\circ$; $\bar{x} = 1894$ m; da \bar{x} um $|\bar{x} - x| - 106$ m zu kurz ist, muß x um + 106 m verbessert werden, um das letztere Ziel bekämpfen zu können. Die Korrektur für + 106 m wird nach der Schußtafel* zu 1,83° bestimmt; die gesamte Erhöhungsverbesserung ist demnach $\Delta q = \bar{q} - q + 1,83 = 7,71^\circ$. Die einzustellende Erhöhung ist somit $\bar{q}_* = 32,71^\circ$. — Kontrolle der Rechnung: In der Mündungswaagerechten gehören zu 2000 bzw. 2200 m Entfernung die Erhöhungen 25° bzw. 28,70°. Man bestimmt wie oben $\bar{q}_1 = 30,88^\circ$, $x_1 = 1894$ m und $\bar{q}_2 = 34,05^\circ$, $\bar{x}_2 = 2078$ m. Durch Interpolation für x = 2000 findet man $\dot{q}_* = 32,71^\circ$ wie oben.

Aus den Gleichungen (49) lassen sich nun einige wichtige Folgerungen für die Flugbahnparabel des luftleeren Raumes ziehen. Der Endpunkt der Bahn, der in der "Mündungswaagerechten", d. h. der waagerechten Ebene durch die Mündung liegt, hat die Koordinaten x = X, y = 0. X wird die Schußweite genannt. Für y = 0 erhält man aus (49) die Flugzeit T

(53)
$$T = \frac{2v_0 \cdot \sin \varphi}{g}$$

Damit ergibt sich aus $X = v_0 \cdot \cos \varphi \cdot T$ die Schußweite zu

(54)
$$X = \frac{v_0^2 \cdot \sin 2\,\varphi}{g}$$

Im besonderen wird die größte Schußweite X_{\max} für sin $2\varphi = 1$, d. h. $\varphi = 45^{\circ}$, erhalten:

(55)
$$X_{\max} = \frac{\mathbf{r_0}^2}{g}, \quad \varphi_{\max} = 45^{\circ}.$$

* Näheres darüber § 33a.

Da ferner sin $2\varphi = \sin (180 - 2\varphi)$ ist, gehört zu jeder Schußweite X ein Winkel φ_1 , der kleiner als 45°, und ein Winkel φ_2 , der größer als 45° ist. φ_1 und φ_2 ergänzen einander zu 90°. Im Endpunkt der Bahn ist die Endgeschwindigkeit v_e gleich der Anfangsgeschwindigkeit v_0 . Der Neigungswinkel im Endpunkt ist entgegengesetzt gleich dem Abgangswinkel φ ; das erkennt man leicht, wenn man in die Gleichung (49 für y) $t = T = \frac{2v_0 \cdot \sin \varphi}{g}$ einführt. — Da der Anfangspunkt willkürlich auf der Flugbahn festgelegt werden kann, gilt der Satz: In gleichen Höhen hat das Geschoß auf dem aufsteigenden Ast dieselbe Geschwindigkeit und die entgegengesetzt gleiche Flugbahnneigung wie auf dem absteigenden Ast. Das letztere erkennt man auch so: Die Gleichung (49) für y ergibt, nach taufgelöst:

(56)
$$g \cdot t = v_0 \cdot \sin \varphi \pm \sqrt[4]{v_0^2 \cdot \sin^2 \varphi - 2y \cdot g}.$$

Dies, in die Gleichung für \dot{y} eingesetzt, liefert mit t
g $\vartheta = \frac{y}{\dot{x}}$ und $v^2 = \dot{x}^2 + \dot{y}^2$ sofort

(57)
$$\operatorname{tg} \vartheta = \frac{\pm \sqrt{v_0^2 \cdot \sin^2 \varphi - 2y \cdot g}}{v_0 \cdot \cos \varphi} \quad \operatorname{und} \quad v^2 = v_0^2 - 2y \cdot g.$$

Im Gipfelpunkt der Flugbahn ist die Tangente waagerecht; da dann wegen $\vartheta = 0$ auch y = 0 wird, folgt aus (49) die Flugzeit t_s bis zum Gipfel:

(58)
$$t_s = \frac{v_0 \cdot \sin \varphi}{g} = \frac{1}{2} T.$$

Die Horizontalentfernung x_s zum Gipfel ist

(59)
$$x_s = v_0 \cdot \cos \varphi \cdot t_s = \frac{1}{2} v_0 \cdot \cos \varphi \cdot T = \frac{v_0^2 \cdot \sin 2\varphi}{2g} = \frac{1}{2} X.$$

Die Gipfelhöhe y_s ergibt sich durch Einsetzen des Wertes t_s aus (58) in (49) für y

(60)
$$y_s = \frac{v_0^2 \cdot \sin^2 \varphi}{2g}$$
 oder $y_s = \frac{g}{8} \cdot T^2$ (Hauptsche Formel)

Die letzte Gleichung für y_s , die sog. Hauptsche Formel, gilt mit

sehr guter Näherung auch für den lufterfüllten Raum. Wir werden später sehen, daß dieser Umstand bei der Berücksichtigung der atmosphärischen Tageseinflüsse außerordentlich nützlich ist.

Beispiele. Anwendung der Hauptschen Formel auf ein Geschoß von 6.9 kg Gewicht, $v_0 = 400$ m/s (Cranzsche Normalbahnen).*

$T=22,34~{ m s}$	42,185 s	55,75 s
$\varphi = 20^{\circ}$	45 °	70°
$y_s = 628,1 \text{ m}$	2304,1 m	3849,3 m
nach (60): $y_s = 623.9 \text{ m}$	$2224,5 \mathrm{m}$	3885,1 m

Bei diesen Beispielen wurde $y_s = 1,25 \cdot T^2$ gesetzt.

b) Zusammenhänge zwischen den Bahnen einer ganzen Schar

Unter einer Flugbahnschar versteht man erstens die Gesamtheit der Flugbahnen, die zu einer festen v_0 gehören und alle Erhöhungen von -90° bis $+90^{\circ}$ durchlaufen; zuweilen teilt man diese Flugbahnschar auch noch in die "Schar der unteren Winkelgruppe" ($0^{\circ} \leq \varphi \leq 45^{\circ}$) und in die "Schar der oberen Winkelgruppe" ($45^{\circ} < \varphi \leq 90^{\circ}$). Zweitens gibt es noch eine Flugbahnschar, bei der die Erhöhung φ konstant bleibt, während die Anfangsgeschwindigkeit v_0 alle Werte von 0 bis ∞ durchläuft.

Wir betrachten zunächst die Schar mit gleichbleibender Anfangsgeschwindigkeit v_0 , aber veränderlichem Abgangswinkel φ und beweisen den Satz: Die Gipfelpunkte der Flugbahnschar liegen auf einer Ellipse, deren Halbachsen $\frac{v_0^2}{2g}$ und $\frac{v_0^2}{4g}$ sind und deren Mittelpunkt vom Nullpunkt um $\frac{v_0^2}{4g}$ auf der y-Achse nach oben verschoben ist. — Eliminiert man nämlich φ aus (59) und (60), so entsteht sofort die Gleichung der Gipfellinie

$$\left(\frac{\frac{x_g}{r_0^2}}{\frac{2g}{2g}}\right)^2 + \left(\frac{\frac{y_g - \frac{r_0^2}{4g}}{\frac{r_0^2}{4g}}}{\frac{r_0^2}{4g}}\right)^2 = 1.$$

^{*} Cranz⁽¹⁾ hat eine ganze Reihe von "Normalbahnen" unter einheitlichen Voraussetzungen genau berechnet, um an Hand solcher Normalwerte die verschiedenen ballistischen Rechenverfahren zu prüfen.

Ein weiterer Satz lautet: Die Kurven gleicher Flugzeiten sind Kreise, deren Mittelpunkte vom Nullpunkt um $\frac{g}{2} \cdot t^2$ auf der *y*-Achse nach unten verschoben sind und deren Radien die Größe $(v_0 \cdot t)$ haben. — Der Beweis ergibt sich sofort durch Elimination von φ aus den Gleichungen

$$x = v_0 \cdot \cos \varphi \cdot t; \quad y = v_0 \cdot \sin \varphi \cdot t - \frac{g}{2} \cdot t^2;$$

die Kreisgleichung wird dann

$$x^{2} + \left(y + \frac{g}{2}t^{2}\right)^{2} = (v_{0} \cdot t)^{2}.$$

Dieser Satz hätte übrigens auch aus dem oben geschilderten Verschwenken der Flugbahn nach dem Angelrutenprinzip geschlossen werden können, das demnach gerade auf dieser Eigenschaft beruht.

Der letzte hier zu beweisende Satz lautet: Die Flugbahnschar mit gleichbleibender v_0 hat eine Einhüllende. Jeder Punkt auf der Einhüllenden wird von einer Flugbahn, alle Punkte innerhalb der Einhüllenden jedoch von zwei und alle Punkte außerhalb von überhaupt keiner Flugbahn getroffen.

Beweis: Aus Gleichung (51) ergibt sich, wenn man die Schrägentfernung OP (Abb. 11) mit R und den Winkel POE mit γ (auch

Abb. 11. Schießen auf geneigtem Boden

Geländewinkel genannt) bezeichnet, da $x = R \cdot \cos \gamma$ und $y = R \cdot \sin \gamma$:

(61)
$$R = \frac{2r_0^2}{g} \cdot \frac{1}{\cos^2 \gamma} \cdot \cos \varphi \cdot \sin (\varphi - \gamma)$$

R wird zu einem Maximum für $\frac{\partial R}{\partial \varphi} = 0$, d. h. cos $(2 \varphi - \gamma) = 0$ oder

(62)
$$\varphi = \frac{1}{2} \left(\frac{\pi}{2} + \gamma \right)$$

Somit wird

(62 a)
$$\begin{pmatrix} R_{\max} = \frac{2v_0^2}{g \cdot \cos^2 \gamma} \cdot \cos \varphi \cdot \sin \left(\frac{\pi}{2} - \varphi\right) - \frac{2v_0^2}{g} \cdot \frac{\cos^2 \varphi}{\cos^2 \gamma} \\ = \frac{2v_0^2}{g} \cdot \frac{\cos^2 \cdot \left|\frac{\pi}{4} + \frac{\gamma}{2}\right|}{\cos^2 \gamma}; \\ x_{\max} = \frac{2v_0^2}{g} \cdot \frac{1}{\cos \gamma} \cdot \cos^2 \left(\frac{\pi}{4} + \frac{\gamma}{2}\right); \\ y_{\max} = \frac{2v_0^2}{g} \cdot \frac{1}{\cos \gamma} \cdot \operatorname{tg} \gamma \cdot \cos^2 \left(\frac{\pi}{4} + \frac{\gamma}{2}\right). \end{cases}$$

Für alle Punkte auf der Geraden mit der Neigung γ , bei denen $R = \sqrt{x^2 + y^2} > R_{\max}$ ist, gibt es keine Erhöhung φ , mit der diese Punkte erreicht werden könnten. Bei allen Punkten mit $R = R_{\max}$ gibt es eine durch (62) definierte Erhöhung. Schließlich werden alle Punkte mit $R < R_{\max}$ von 2 Flugbahnen getroffen, deren Erhöhungen φ_1 und φ_2 sich zu $\left(\frac{\pi}{2} + \gamma\right)$ ergänzen, d. h.

$$\varphi_1 + \varphi_2 = \frac{\pi}{2} + \gamma.$$

Denn:
$$\cos \varphi_1 = \cos \left(\frac{\pi}{2} - \varphi_2 + \gamma \right)$$

und
$$\sin (\varphi_1 - \gamma) = \sin \left(\frac{\pi}{2} + \gamma - \varphi_2 - \gamma\right),$$

oder
$$\cos \varphi_1 = \sin (\varphi_2 - \gamma)$$

und
$$\sin(\varphi_1 - \gamma) = \cos \varphi_2$$
,

d. h.
$$\cos \varphi_1 \cdot \sin (\varphi_1 - \gamma) = \cos \varphi_2 \cdot \sin (\varphi_2 - \gamma)$$

und somit $R(\varphi_1) = R(\varphi_2).$

Die Gleichung der Einhüllenden ist die Kurve der R_{\max} für alle γ ; nach (62a) ist also

$$R_{\max} = \left\{ \overline{x_{\epsilon}^2 + y_{\epsilon}^2} = \frac{2v_0^2}{g} \cdot \frac{\cos^2\left(\frac{\pi}{4} + \frac{\gamma}{2}\right)}{\cos^2\gamma} \right\}$$

oder da^(II) $\cos^2\left(\frac{\pi}{4} + \frac{\gamma}{2}\right) = \frac{1 - \sin \gamma}{2}$, $\frac{1}{\cos^2 \gamma} = 1 + tg^2 \gamma$ und $tg \gamma = \frac{y}{x}$, folgt schließlich

(62 b)
$$x_{\epsilon}^{2} + 2y_{\epsilon} \cdot \frac{v_{0}^{2}}{g} = \left(\frac{v_{0}^{2}}{g}\right)^{2},$$

also eine Parabel, die aus leicht verständlichen Gründen auch Sicherheitsparabel genannt wird.

Für die Bahnen mit gleichbleibendem Abgangswinkel, aber verschiedenen Anfangsgeschwindigkeiten v_0 ergeben sich ähnliche Sätze. Wir beweisen die folgenden beiden: 1. Der geometrische Ort aller Gipfelpunkte ist eine Gerade. 2. Die Kurven gleicher Flugzeiten sind Geraden.

- zu 1: Gleichung (59) und (60) liefern $\frac{y_s}{x_s} = \frac{1}{2} \cdot \operatorname{tg} \varphi$, wenn v_0^2 eliminiert wird. Das ist eine Gerade durch den Nullpunkt mit dem Neigungswinkel arctg $(\frac{1}{2} \operatorname{tg} \varphi)$.
- zu 2: Durch Elimination von v_0 aus den Gleichungen

 $x = v_0 \cdot \cos \varphi \cdot t$, $y = v_0 \cdot \sin \varphi \cdot t - \frac{g}{2} t^2$ folgt $y = x \cdot \operatorname{tg} \varphi - \frac{g}{2} \cdot t^2$. Das ist eine gerade Linie, die parallel der Abschußrichtung φ ist und die y-Achse unterhalb 0 in $\frac{g}{2} \cdot t^2$ schneidet.

c) Einfluß kleiner Änderungen der Anfangsgeschwindigkeit und des Abgangswinkels

Wenn es sich darum handelt, den Einfluß kleiner Änderungen von v_0 und φ zu berechnen, so führt folgende Methode leicht zum Ziel.

Aus
$$X = \frac{v_0^2 \cdot \sin 2\varphi}{g}$$
 und $T = \frac{2 v_0 \cdot \sin \varphi}{g}$ folgt, wenn die Dif-

ferentiale in $dX = \frac{\partial X}{\partial v_0} \cdot dv_0 + \frac{\partial X}{\partial \varphi} \cdot d\varphi$ usw. durch die Differenzen $\Delta X, \Delta v_0, \ldots$ ersetzt werden, unschwer

(64)
$$\frac{\Delta X}{X} = \frac{2\Delta v_0}{v_0} + 2\cot g \, 2 \, \varphi \cdot \Delta \, \varphi \, ; \quad \frac{\Delta T}{T} = \frac{\Delta v_0}{v_0} + \cot g \, \varphi \cdot \Delta \, \varphi.$$

Ähnliche Formeln ergeben sich für Ziele außerhalb der Mündungswaagerechten mit Hilfe der Formel (61):

(65)
$$\frac{\Delta R}{R} = \frac{2\Delta v_0}{v_0} + \frac{\cos\left(2\varphi - \gamma\right)}{\cos\varphi \cdot \sin\left(\varphi - \gamma\right)} \cdot \Delta \varphi + \left[2 \operatorname{tg} \gamma - \operatorname{cotg}\left(\varphi - \gamma\right)\right] \cdot \Delta \gamma.$$

Die Formeln (64) und (65) können mit einer gewissen Näherung auch für Überschlagsrechnungen im lufterfüllten Raum Verwendung finden.

Beispiel. Ein Ziel in der Mündungswaagerechten hat die Entfernung 2000 m. Die ursprüngliche $v_0 = 220$ m/s werde durch Wärmebestrahlung des Pulvers um +5,5 m/s vergrößert. Damit ergibt sich zunächst bei $\Delta \varphi = 0: \Delta X = +100$ m. Dieser Entfernungsunterschied muß durch Erhöhungsänderung ausgeschaltet werden. Bei $\Delta v_0 = 0$ liefert daher (64), wenn das Geschütz mit $\varphi = 15^{\circ}$ eingeschossen war, $\Delta \varphi = -50'$, die nunmehr von der ursprünglich eingestellten Erhöhung abzubrechen sind. Bei $v_0 = 225,5$ m/s wird also eine Schußweite von 2000 m bei der Erhöhung $\dot{\varphi} = 14^{\circ}10'$ erreicht.

d) Flugbahnen des luftleeren Raumes bei Berücksichtigung aller Kräfte

Zum Abschluß der Betrachtungen über die Ballistik des luftleeren Raumes behandeln wir die Bewegung eines Geschosses im Vakuum, wobei alle auftretenden Kräfte berücksichtigt werden sollen, also die Schwerkraft mit Rücksicht auf ihre Verkleinerung bei wachsendem Abstand von der Erdoberfläche, weiter die Zentrifugalkraft und die Corioliskraft, die beide ihre Ursache in der Erdrotation haben.

Das Geschütz befinde sich an einem Ort der Erdoberfläche, dessen Erdradius mit der Äquatorebene den Winkel β bildet. Zur Vereinfachung der zu bewältigenden Differentialgleichungen führen wir ein Koordinatensystem (X, Y, Z) mit dem Ursprung im Erdmittelpunkt ein, dessen Z-Achse mit der Drehachse der als kugelförmig angeschenen Erde zusammenfalle; die (X, Y)-Ebene sei so festgelegt, daß Z auf ihr senkrecht steht und X, Y bzw. Z an der Erdoberfläche die Koordinaten 0, $R \cdot \cos \beta$ bzw. $R \cdot \sin \beta$ haben, wenn R den Erdradius (~ 6375 km) bedeutet. Im übrigen sei (X, Y, Z) gleichsinnig mit dem bisher betrachteten Koordinatensystem (x, y, z). Die Komponenten der Zentrifugalkraft für die drei Achsen sind, wenn n die Winkelgeschwindigkeit der Erddrehung ist: $n^2 \cdot X$, $n^2 \cdot Y$, 0, während andererseits die entsprechenden Komponenten der Corioliskraft -2nY, 2nX, 0 sind. — Wir wollen die Ableitung hier so durchführen, daß die entstehenden Gleichungen auch im lufterfüllten Raume verwendet werden können. Dazu nehmen wir an, daß die Bewegung des Geschosses bereits unter der vereinfachten Annahme ruhender Erde, d. h. verschwindenden Einflusses von Zentrifugal- und Corioliskraft bekannt sei. Die Koordinaten (X^*, Y^*, Z^*) des Ortes, an dem das Geschoß sich bei ruhender Erde zur Zeit t befinden würde, seien

$$X^* = \xi(t); \quad Y^* = \eta(t); \quad Z^* = \zeta(t).$$

Dann kann man offenbar für die Bewegung des Geschosses bei rotierender Erde das folgende Differentialgleichungssystem (66) anschreiben:

(66)
$$\begin{aligned} \ddot{X} &= \ddot{\xi} + n^2 \cdot X - 2n \cdot \dot{Y} \\ \ddot{Y} &= \ddot{\eta} + n^2 \cdot Y + 2n \cdot \dot{X} \\ \ddot{Z} &= \ddot{\zeta} \end{aligned}$$

Auf die Integration dieses Systems werden wir zum Schluß dieser Betrachtungen eingehen. —

Zunächst interessiert noch die Frage, welche Bewegung das Geschoß ausführen würde, wenn die Erde als ruhend vorausgesetzt und Abnahme der Schwerebeschleunigung mit wachsendem Abstand von der Erdoberfläche angenommen wird. Die Beantwortung dieser Frage schließt also die Bestimmung der $\xi(t), \eta(t), \zeta(t)$ ein. — Nach den Keplerschen Gesetzen ist bekannt, daß das Geschoß sich unter den gemachten Voraussetzungen auf dem Bogen einer Ellipse (oder Parabel bzw. Hyperbel) bewegen muß, von der ein Brennpunkt im Erdmittelpunkt liegt. Die Gleichung dieser Ellipse in Polarkoordinaten könnte leicht hingeschrieben werden. Wir werden aber hier einen anderen Weg gehen und ξ, η, ζ als Funktionen der Zeit bestimmen.

60 Kap. II. Luftleerer Raum. Flugbahneigenschaften. Äbnlichkeit

Ist β der Winkel zwischen Äquatorebene und dem Erdradius zum Geschützort, und bezeichnet man weiter mit α den Winkel zwischen der Südrichtung und der horizontalen Abschußrichtung x. positiv von S nach SO gezählt, so ist der Zusammenhang der Koordinaten (x, y, z) mit den Koordinaten (X, Y, Z) durch folgendes System gegeben:

(67)
$$\begin{cases} X = -x \cdot \sin \alpha + z \cdot \cos \alpha; \\ Y = R \cdot \cos \beta + x \cdot \cos \alpha \cdot \sin \beta + y \cdot \cos \beta + z \cdot \sin \alpha \cdot \sin \beta; \\ Z = R \cdot \sin \beta - x \cdot \cos \alpha \cdot \cos \beta + y \cdot \sin \beta - z \cdot \sin \alpha \cdot \cos \beta. \end{cases}$$

Kennt man also (x, y, z), so lassen sich daraus (X, Y, Z) bestimmen und umgekehrt. — Der Einfachheit halber betrachten wir die Geschoßbewegung bei höhenveränderlicher Schwerebeschleunigung im Koordinatensystem (x, y, z). Die Komponenten der Schwerkraft für diese Achsen sind in Formel (3) gegeben; die Bewegungsgleichungen lauten daher

(68)
$$\begin{aligned} \ddot{x} &= -\frac{g}{R} \cdot x \;; \; \ \ddot{y} = -g \cdot \left(1 - \frac{2y}{R}\right); \; \ \ddot{z} = -\frac{g}{R} \cdot z \\ \text{mit den Anfangsbedingungen für } t = 0; \\ x(0) &= y(0) = 0; \; \ \dot{x}(0) = v_0 \cdot \cos\varphi; \; \ \dot{y}(0) = v_0 \cdot \sin\varphi. \\ \text{[Hier ist wegen } z(0) = \dot{z}(0) = 0 \text{ dauernd } z = 0.] \end{aligned}$$

Das allgemeine Integral der Gleichung für x lautet^(X):

$$\begin{aligned} x &= A_1 \cdot \cos\left(\left|\frac{\overline{g}}{R} \cdot t\right) + B_1 \cdot \sin\left(\left|\frac{\overline{g}}{R} \cdot t\right)\right; \\ \dot{x} &= -\left|\sqrt{\frac{g}{R}} \cdot A_1 \cdot \sin\left(\left|\frac{\overline{g}}{R} \cdot t\right) + \left|\sqrt{\frac{g}{R}} \cdot B_1 \cdot \cos\left(\left|\frac{\overline{g}}{R} \cdot t\right)\right. \end{aligned} \right. \end{aligned}$$

Da auf Grund der Anfangsbedingungen A_1 und B_1 die Werte

$$A_1 = 0; \quad B_1 = \sqrt{\frac{R}{g}}; \quad v_0 \cdot \cos \varphi$$

annehmen, folgen für x die Gleichungen

(68 a)
$$\begin{cases} x = \left| \frac{\overline{R}}{g} \cdot v_0 \cdot \cos \varphi \cdot \sin \left(\left| \frac{\overline{g}}{R} \cdot t \right) \right|; \\ \dot{x} = v_0 \cdot \cos \varphi \cdot \cos \left(\left| \frac{\overline{g}}{R} \cdot t \right) \right|. \end{cases}$$

Mit der Substitution $u = g \cdot \left(1 - \frac{2}{R} \cdot y\right)$ liefert die 2. Gleichung (68) die neue

(68 b)
$$\ddot{u} = \frac{2g}{R} \cdot u,$$

deren allgemeines Integral^(X)

$$u = A_{2} \cdot e^{\sqrt{\frac{2g}{R}} \cdot t} + B_{2} \cdot e^{-\sqrt{\frac{2g}{R}} \cdot t};$$

$$\dot{u} = \sqrt{\frac{2g}{R}} \cdot \left| A_{2} \cdot e^{\sqrt{\frac{2g}{R}} \cdot t} - B_{2} \cdot e^{-\sqrt{\frac{2g}{R}} \cdot t} \right|$$

ist. Wegen der Anfangsbedingungen

 $y(0) = 0, \ y(0) = v_0 \cdot \sin \varphi, \ d. h. \ u(0) = g; \ \dot{u}(0) = -\frac{2g}{R} \cdot v_0 \cdot \sin \varphi$ haben A_2 und B_2 die Werte

$$2\,A_{\mathbf{2}} = g - \sqrt{\frac{2g}{R}} \cdot v_{\mathbf{0}} \cdot \sin\varphi; \quad 2\,B_{\mathbf{2}} = g + \sqrt{\frac{2g}{R}} \cdot v_{\mathbf{0}} \cdot \sin\varphi.$$

Damit wird

$$u = g \cdot \frac{e^{\sqrt{\frac{2g}{R}} \cdot t} + e^{-\sqrt{\frac{2g}{R}} \cdot t}}{2} - \sqrt{\frac{2g}{R}} \cdot v_0 \cdot \sin \varphi \cdot \frac{e^{\sqrt{\frac{2g}{R}} \cdot t} - e^{-\sqrt{\frac{2g}{R}} \cdot t}}{2}$$

oder(III)

$$y = \frac{R}{2} - \frac{R}{2} \cdot \operatorname{Coj}\left(\left|\frac{\overline{2g}}{R} \cdot t\right) + \sqrt{\frac{R}{2g}} \cdot v_0 \cdot \sin\varphi \cdot \operatorname{Sin}\left(\left|\frac{\overline{2g}}{R} \cdot t\right)\right)$$

Nach einigen Umformungen erhalten wir, wenn (68a) noch einmal hingeschrieben wird, für die Flugbahngleichungen bei Einführung der halben Argumente in Coj und Sin^{(III)*}

^{*} Bei der numerischen Rechnung benutze man z. B. die Tabellen von Hayashi(38) für Sin, Coj, Tang (vgl. auch die Zahlentafel im Anhang).

(69)
$$x = v_{0} \cdot \cos \varphi \cdot \left| \frac{\overline{R}}{g} \cdot \sin \left(\left| \frac{\overline{g}}{R} \cdot t \right) \right. \right. \\ y = \Im \left(\left| \frac{\overline{g}}{2R} \cdot t \right) \cdot \left| v_{0} \cdot \sin \varphi \cdot \right| \frac{\overline{2R}}{g} \cdot \operatorname{Coj} \left(\left| \frac{\overline{g}}{2R} \cdot t \right) \right. \\ \left. - R \cdot \Im \left(\left| \frac{\overline{g}}{2R} \cdot t \right) \right| \right. \right]$$

Man überzeugt sich leicht, daß für g = konst. und $R = \infty$ die Gleichungen (49) entstehen; man braucht nur

$$\sin\left(\int \frac{\sqrt{g}}{R} \cdot t \right), \quad \mathfrak{Coj}\left(\int \frac{\sqrt{g}}{2R} \cdot t \right) \quad \mathrm{und} \quad \mathfrak{Sin}\left(\int \frac{\sqrt{g}}{2R} \cdot t \right)$$

in Taylorsche Reihen^(VI) entwickeln und $R \rightarrow \infty$ gehen zu lassen^(IV). — Von Wichtigkeit ist hier noch die Bestimmung des Endpunktes

der Bahn. Dieser liegt auf der Erdoberfläche, deren Meridianschnitt ein Kreis mit dem Radius R ist. Infolgedessen bestimmt sich der Endpunkt der Bahn als Schnittpunkt des Kreises

$$x^2 + (y + R)^2 = R^2$$

mit der durch (69) dargestellten Flugbahnkurve. — Einfacher ist der folgende Weg (Abb. 12): Das Geschoß erreicht in P(x = X, y = 0)die x-Achse praktisch genau mit der Neigung — φ (= Abgangs-

Abb. 12. Berücksichtigung der Kugelgestalt der Erde

winkel) und der Endgeschwindigkeit v_0 (= Anfangsgeschwindigkeit). Nun ist tg $\gamma = \text{tg}(\widehat{OMA}) = \frac{X}{R}$, also $MP = \frac{R}{\cos \gamma}$, Bogen $\widehat{OA} = R \cdot \gamma$. Da das Geschoß aber erst in E aufschlägt, ist die wirkliche Schußweite $\overline{X} = \widehat{OA} + \widehat{AE}$. Der Bogen \widehat{AE} kann als geradlinig angeschen werden; wenn man auch den Flugbahnendbogen \widehat{PE} als gerade ansieht, so ist in dem Dreieck AEP der Winkel bei E gleich $(\varphi - \gamma)$. Folglich also

$$AE = \Delta \overline{X} = AP \cdot \operatorname{ctg}(\varphi - \gamma) = \left(\frac{R}{\cos \gamma} - R\right) \cdot \operatorname{ctg}(\varphi - \gamma)$$

Die Vergrößerung der wahren Flugzeit \overline{T} bis E ist die Summe der Flugzeit T (Bogen \widehat{OP}) und der Flugzeit $\Delta \overline{T}$ (Bogen \widehat{PE}). Es ist $PE = \frac{AP}{\sin(\varphi - \gamma)} = \left(\frac{R}{\cos\gamma} - R\right) \cdot \frac{1}{\sin(\varphi - \gamma)}$ und schließlich $\Delta \overline{T} = \frac{PE}{r}$.

Beispiel: Anfangsgeschwindigkeit $v_0 = 1000 \text{ m/s}, \varphi = 45^\circ$, Erdradius $R = 6375 \text{ km}, \ g(0) = 9.81 \text{ m/s}^2.$

Für y = 0 folgt aus (69)

(70)
$$\mathfrak{Taug}\left(\left| \sqrt{\frac{g}{2R}} \cdot T \right) = v_0 \cdot \sin \varphi \cdot \left| \frac{2}{g \cdot R} \right|$$

Dann ist zunächst T = 144,935 s, somit X = 101,932 km. Weiter ist $\gamma = 0.015989$ (Bogenmaß), somit $\overrightarrow{OA} = 101.932$ km; AP = 0.830 km, $\Delta \overline{X} = 0.857$ km und somit $\overline{X} = 102.987$ km. Ebenso findet man PE = 1,192 km, d. h. $\Delta \overline{T} = 1,192$ s, also $\overline{T} = 146,127$ s. — Bei waagerecht angenommener Erdoberfläche und konstant angenommener Schwerkraft $g = 9.81 \text{ m/s}^2$ erhält man nach (49): $X^* = 101.937 \text{ km}$; $T^* = 144,161$ s; demnach bewirken die Erdkrümmung und die Veränderlichkeit der Schwerebeschleunigung einen Schußweitenzuwachs von 0,852 km und eine Flugzeitvergrößerung von 1,966 s.

Man kann die Formeln (69) auch für beliebige Flugbahnen, also speziell für den lufterfüllten Raum verallgemeinern. Denkt man sich nämlich die Flugbahn zunächst berechnet für eine mit der Höhe unveränderliche Schwerkraft, und hat diese Flugbahn die Koordinaten x = r(t), y = n(t), z = k(t), so können die Differentialgleichungen der Bewegung mit Berücksichtigung der veränderlichen Schwerkraft auch geschrieben werden:

$$\ddot{x} = \ddot{z} - rac{g}{R} \cdot x; \quad \ddot{y} = (\ddot{\mathfrak{y}} + g) - g \cdot \left(1 - rac{2}{R} \cdot y\right); \quad \ddot{z} = \ddot{\mathfrak{z}} - rac{g}{R} \cdot z.$$

Daraus ergibt sich also, daß die oben für das Vakuum abgeleiteten allgemeinen Integrale für diese Differentialgleichungen die allgemeinen Integrale ihrer homogenen Gleichung darstellen. Ihnen braucht also nur noch je ein partikuläres Integral der inhomogenen Differentialgleichung hinzugefügt werden.^(X) Diese partikulären Integrale sind leicht zu bestimmen, da nach einem Satz aus der Theorie der Differentialgleichungen für die Konstanten A und B in der allgemeinen Lösung der homogenen Gleichung eine einfache "Variation der Konstanten" durchzuführen, d. h. A = A(t), B = B(t) anzusetzen ist. Demnach sind die Integrale J, die der Lösung der homogenen Gleichung noch anzufügen sind^(X):

$$\begin{aligned} \text{für } x: \ J_{x} &= \sqrt{\frac{R}{g}} \cdot \left| \sin\left(\sqrt{\frac{g}{R}} \cdot t\right) \cdot \int_{0}^{t} \cos\left(\sqrt{\frac{g}{R}} \cdot t\right) \cdot \ddot{z} \cdot dt \\ &- \cos\left(\left(\sqrt{\frac{g}{R}} \cdot t\right) \cdot \int_{0}^{t} \sin\left(\sqrt{\frac{g}{R}} \cdot t\right) \cdot \ddot{z} \cdot dt\right]; \end{aligned}$$

$$\begin{aligned} \text{für } y: \ J_{y} &= \frac{1}{2} \cdot \left| \frac{R}{2g} \cdot \left| e^{\left(\frac{2g}{R} \cdot t\right) \cdot \int_{0}^{t} e^{-\left(\sqrt{\frac{2g}{R}} \cdot t\right) \cdot \ddot{z} \cdot dt\right]} \cdot \ddot{y} \cdot dt \\ &- e^{-\left(\sqrt{\frac{2g}{R}} \cdot t\right) \cdot \int_{0}^{t} e^{\left(\sqrt{\frac{2g}{R}} \cdot t\right) \cdot \ddot{y} \cdot dt}; \end{aligned}$$

$$\begin{aligned} \text{für } z: \ J_{z} &= \sqrt{\frac{R}{g}} \cdot \left| \sin\left(\sqrt{\frac{g}{R}} \cdot t\right) \cdot \int_{0}^{t} \cos\left(\sqrt{\frac{g}{R}} \cdot t\right) \cdot \ddot{y} \cdot dt \\ &- \cos\left(\left(\sqrt{\frac{g}{R}} \cdot t\right) \cdot \int_{0}^{t} \sin\left(\sqrt{\frac{g}{R}} \cdot t\right) \cdot \ddot{y} \cdot dt\right].\end{aligned}$$

Wir können nunmehr an die Ermittlung der Lösungen des Systems (66) herantreten; diese Lösungen liefern dann die Bahnpunkte, die unter dem Einfluß aller im Vakuum möglichen Kräfte vom fliegenden Geschoß eingenommen werden. Mit (69) sind die Koordinaten der Flugbahn in (x, y, z) bekannt, die unter Vernachlässigung der Zentrifugal- und Corioliskraft erhalten wurden. Nach Anwendung der Transformationsformeln (67) ergeben sich dann ohne Schwierigkeit auch die Koordinaten (X^*, Y^*, Z^*) , die wir in (66) mit ξ, η, ζ bezeichnet haben und infolgedessen in (66) als bekannt angenommen werden dürfen. Dabei machen wir ausdrücklich darauf aufmerksam, daß ξ , η , ζ nicht notwendig Koordinaten des Vakuums zu sein brauchen, sondern ξ , η , ζ können auch die Flugbahnkoordinaten einer im lufterfüllten Raum bei ruhender Erde berechneten Bahn sein.

Zunächst erkennt man in (66), daß $\ddot{Z} = \ddot{\zeta} = \ddot{Z}^*$, also auch $Z = Z^*$ wird, oder: in Richtung der Erdachse wird durch Coriolisund Zentrifugalkraft keine Veränderung herbeigeführt. — Führen wir in (66) in komplexer Schreibweise die neue Veränderliche W ein:

$$W = X + i \cdot Y,$$

so ergibt sich durch Addition der beiden ersten Gleichungen eine inhomogene Differentialgleichung 2. Ordnung mit konstanten Koeffizienten:

(71)
$$\ddot{W} = 2n \cdot i \cdot \dot{W} - n^2 \cdot W = \ddot{\psi}(t)$$

wo $\psi = \xi + i \cdot \eta$, $W = X + i \cdot Y$.

Die Integration dieser Gleichung ist einfach; da $e^{-i \cdot n \cdot t}$ und $t \cdot e^{-i \cdot n \cdot t}$ zwei partikuläre Integrale der homogenen Gleichung sind, lautet das allgemeine Integral der Differentialgleichung (71)^(X)

(72)
$$W = e^{+i\cdot n\cdot t} \cdot \left| t \cdot \int_{0}^{t} e^{-i\cdot n\cdot t} \cdot \ddot{\psi} \cdot dt - \int_{0}^{t} t \cdot e^{-i\cdot n\cdot t} \cdot \ddot{\psi} \cdot dt \right|$$
$$+ B \cdot t + A$$
$$W = +i \cdot n \cdot W + e^{+i\cdot n\cdot t} \cdot \left| \int_{0}^{t} e^{-i\cdot n\cdot t} \cdot \ddot{\psi} \cdot dt + B \right|$$

Die Integrationskonstanten A und B bestimmen sich ohne weiteres aus den Anfangsbedingungen

$$W(0) = X(0) + i \cdot Y(0); \quad \dot{W}(0) = \dot{X}(0) + i \cdot \dot{Y}(0)$$

zu

$$\begin{aligned} A &= W(0) = X(0) + i \cdot Y(0); \quad B - W(0) - i \cdot n \cdot A, \quad \text{d. h.} \\ B &= [X(0) + n \cdot Y(0)] + i \cdot [Y(0) - n \cdot X(0)]. \end{aligned}$$

Athen, Ballistik

5

Unter Berücksichtigung, daß allgemein $e^{i\omega} = \cos \omega + i \cdot \sin \omega$ ist⁽¹⁾, erhält man nach Aufspaltung der Gleichung (72) in Realund Imaginärteil

$$X = \cos nt \cdot \left\{ t \cdot \int_{0}^{t} (\ddot{\xi} \cdot \cos nt) + \ddot{\eta} \cdot \sin nt) dt - \int_{0}^{t} t \cdot (\ddot{\xi} \cdot \cos nt + \ddot{\eta} \cdot \sin nt) dt + [\dot{X}(0) + n \cdot Y(0)] \cdot t + X(0) \right\}$$

$$(73) \qquad -\sin nt \cdot \left\| t \cdot \int_{0}^{t} (-\ddot{\xi} \cdot \sin nt + \ddot{\eta} \cdot \cos nt) \cdot dt - \int_{0}^{t} t \cdot (-\ddot{\xi} \cdot \sin nt + \ddot{\eta} \cdot \cos nt) \cdot dt + [\dot{Y}(0) - n \cdot X(0)] \cdot t + Y(0) \right\|$$

$$Y = \cos nt \cdot \left\| \cdots \right\} + \sin nt \cdot \left\{ \cdots \right\}$$
(in den Klammern die bei X stehenden Ausdrücke)

Die weitere Behandlung dieser Gleichungen, also die Rücktransformation auf die Koordinaten x, y, z nach (67) und die Quadraturen der auftretenden Integrale, bieten keine Schwierigkeit mehr. Die Ausführung möge dem Leser überlassen bleiben. Nimmt man für ξ, η, ζ die aus (49) folgenden Werte des Vakuums, so erhält man schließlich Korrekturformeln, die Cranz⁽¹⁾⁽³⁾ unter Vernachlässigung bestimmter Glieder angegeben hat.

Die Entstehung seiner Formeln beruht auf einer teilweisen Vernachlässigung der Zentrifugalkraft. Die Schwerkraft wirkt bekanntlich nicht genau in Richtung des Erdradius, sondern infolge der Wirkung der Zentrifugalkraft in einer um den Winkel δ abweichenden Richtung. Den Winkel zwischen der tatsächlichen Richtung der Schwerkraft und der Äquatorebene nennt man die geographische Breite β_0 . Dabei ist

$$\beta_0 = \beta + \delta$$
, we $\delta \sim \frac{n^2 \cdot R \cdot \sin 2\beta}{2 g_0}$

$$(g_0 = 9,83 \text{ m/s}^2 = \text{Beschleunigung} \text{ am Pol})$$

 δ ist demnach maximal 5,9' für $\beta = \frac{\pi}{4}$. Ersetzt man in den vorangehenden Entwicklungen β durch β_0 , so wird in gewissem Umfange die Wirkung der Zentrifugalkraft ausgeschaltet, so daß in der Differentialgleichung (71) $n^2 \cdot W$ vernachlässigt werden kann. Das Integral der dann entstehenden Differentialgleichung

$$\ddot{W} - 2n \cdot i \cdot \dot{W} = \ddot{\psi}$$

ist leicht zu bilden; es ist gegeben^(X) durch

ſ

$$W - W_0 = e^{+2nit} \cdot \int_0^t e^{-2nit} \cdot \dot{\psi} \cdot dt.$$

Die Komponentenzerlegung wird wie oben durchgeführt und führt schließlich auf die Cranzsche Lösung (74). Sie lautet:

(74)
Korrekturen:
für Schußweite:

$$\Delta X = \frac{4n \cdot v_0^3 \cdot \cos \beta_0 \cdot \sin \varphi}{3g^2} \cdot [4\cos^2 \varphi - 1] \cdot \sin \alpha;$$
(74)
für Flugzeit:

$$\Delta T = 2\sin 2\varphi \cdot \cos \beta_0 \cdot \sin \alpha \cdot \frac{n \cdot v_0^2}{g^2};$$
Rechtsabweichung:

$$\Delta z = \frac{4n \cdot v_0^3}{3g^2} \cdot \sin^2 \varphi \cdot [3\cos \varphi \cdot \sin \beta_0 + \sin \varphi \cdot \cos \beta_0 \cdot \cos \alpha].$$

Beispiel. $v_0 = 1000 \text{ m/s}$; $\varphi = a = \beta_0 = 45^{\circ}$. Nach den Formeln von Cranz erhält man: $\Delta X = 0.358 \text{ km}$, $\Delta T = 0.759 \text{ s}$, $\Delta z = 0.937 \text{ km}$.

Es sei darauf hingewiesen, daß in den abgeleiteten Formeln a durch (-a) zu ersetzen ist, wenn das Geschütz sich auf der südlichen Erdhalbkugel befindet.

Schließlich erkennt man, daß Rechts- oder Linksabweichung eintritt, je nachdem [vgl. (74)]

$$3\cos\varphi\cdot\sin\beta_0+\sin\varphi\cdot\cos\beta_0\cdot\cos\alpha>0$$
 oder <0

ist. Wird z. B. am Äquator nach Norden geschossen, so tritt nach (74) Linksabweichung ein.

§ 6. Allgemeine Eigenschaften jeder Flugbahn im lufterfüllten Raum

a) Geometrische und dynamische Verhältnisse

Ohne die Lösung der Differentialgleichungen (44) bis (47) in endlicher Form zu kennen, läßt sich aus ihnen eine Reihe von allgemeinen Sätzen ablesen, die das geometrische und dynamische Verhalten der Flugbahnkurve betreffen. Zunächst ergeben die Differentialgleichungen, daß die ballistische Kurve durch Verformung aus der Flugbahnparabel des luftleeren Raumes entstanden zu denken ist. Dann schreibt man das System (44) in der Form

(75)
$$\ddot{x} = -\dot{x} \cdot \psi(v, y); \quad \ddot{y} = -g - \dot{y} \cdot \psi(v, y),$$

wo $\psi(v, y) = c \cdot \delta(y) \cdot v \cdot K\left(v \cdot \int \frac{\overline{T_u}}{T(y)}\right)$ stets positiv ist, so ergibt zweimalige Integration der Differentialgleichungen (75):

(76)
$$\begin{aligned} \dot{x} &= v_{0} \cdot \cos \varphi - \int_{0}^{t} \dot{x} \cdot \psi \cdot dt; \\ \dot{y} &= v_{0} \cdot \sin \varphi - g \cdot t - \int_{0}^{t} y \cdot \psi \cdot dt; \\ x &= v_{0} \cdot \cos \varphi \cdot t - \int_{0}^{t} \int_{0}^{t} \dot{x} \cdot \psi \cdot dt \cdot dt; \\ y &= v_{0} \cdot \sin \varphi \cdot t - \frac{g}{2} \cdot t^{2} - \int_{0}^{t} \int_{0}^{t} \dot{y} \cdot \psi \cdot dt \cdot dt. \end{aligned}$$

Man erkennt hier sofort, daß die Flugbahnelemente x, y und die Geschwindigkeitskomponenten \dot{x} und \dot{y} gleich denen des luftleeren Raumes, vermindert um die in (76) rechts stehenden Integralausdrücke, sind. Für die Praxis heißt das, daß eine Flugbahnkurve des lufterfüllten Raumes oft mit Vorteil durch Bogenstücke der Flugbahnparabel des Vakuums ersetzt werden kann unter nachträglicher Berücksichtigung der als Korrekturen anzuschenden Integralausdrücke. Wir werden hierauf noch zurückkommen. —

Die folgenden Sätze gelten allgemein für jede Flugbahn. Zur Veranschaulichung geben wir auf S. 75 eine Flugbahn tabellarisch wieder, an der die angegebenen Sätze nachgeprüft werden können.

1. Die 1. Gleichung (75) ergibt

$$\frac{d(\ln x)}{dt} = -\psi(v, y), \quad d. h.$$
$$\dot{x} = v_0 \cdot \cos \varphi \cdot e^{-\int \psi \cdot dt} = v \cdot \cos \psi.$$

Das bedeutet: Die Horizontalkomponente der Geschwindigkeit ist stets positiv und beständig abnehmend.

2. In gleichen Flughöhen ist der spitze Winkel ϑ_1 bzw. ϑ_2 der Tangente mit der Horizontalen auf dem aufsteigenden Ast kleiner als auf dem absteigenden Ast. Insbesondere ist der spitze Auftreffwinkel (= Fallwinkel) ω in der Mündungswaagerechten größer als der Abgangswinkel φ .

Beweis: Die Gleichung $\frac{dy}{d\vartheta} = -\frac{v^2}{g} \cdot tg\vartheta$ liefert $tg\vartheta \cdot \frac{d\vartheta}{\cos^2\vartheta} = -\frac{g \cdot dy}{v^2 \cdot \cos^2\vartheta}$ oder $\frac{1}{2} d(tg^2\vartheta) = -\frac{g \cdot dy}{x^2}$. Integriert man dies von y bis zum Gipfel in der Höhe y_s , so ergibt sich für den auf- bzw. absteigenden Ast

$$\frac{1}{2} \operatorname{t} g^2 \vartheta_1 = \left| \int_y^{y_g} \frac{g \cdot dy}{x^2} \right|_1 \quad \text{bzw.} \quad \frac{1}{2} \operatorname{t} g^2 \vartheta_2 = \left[\int_y^{y_g} \frac{g \cdot dy}{x^2} \right]_2.$$

Da nach Satz 1 \dot{x} endlich und stets abnehmend ist, ergibt sich in der Tat $\vartheta_1 < \vartheta_2$, speziell $\varphi < \omega$ für y = 0.

3. In gleichen Flughöhen ist die Bahngeschwindigkeit v_1 des aufsteigenden Astes größer als die Bahngeschwindigkeit v_2 des absteigenden Astes.

Beweis: Der Unterschied der lebendigen Kräfte ist $\frac{m}{2} \cdot (v_2^2 - v_1^2)$; dieser muß gleich der Arbeit der Schwere – Arbeit des Widerstandes sein. Erstere ist Null, da beide Punkte in gleicher Höhe liegen. Letztere ist – $\int W \cdot ds$ und stets negativ. Infolgedessen ist $v_2^2 - v_1^2 < 0$, d. h. $v_1 > v_2$. Insbesondere ist also die Anfangsgeschwindigkeit v_0 stets größer als die Endgeschwindigkeit v_e (in der Mündungswaagerechten).

4. Die Flugbahngeschwindigkeit kann ein Minimum nur auf dem absteigenden Ast der Flugbahn annehmen. — Unter bestimmten Voraussetzungen strebt die Flugbahngeschwindigkeit asymptotisch einem endlichen Grenzwert zu, der entweder von Null verschieden oder gleich Null ist.

5. Der absteigende Flugbahnast hat eine vertikale Asymptote.

Beweis für beide Sätze: Die Gleichungen (75)

$$\ddot{x} = -\dot{x} \cdot \psi(v, y); \quad \ddot{y} = -g - \dot{y} \cdot \psi(v, y)$$

ergeben mit $v^2 = \dot{x}^2 + \dot{y}^2$:

$$v \cdot \frac{dv}{dt} = \dot{x} \cdot \frac{d\dot{x}}{dt} + \dot{y} \cdot \frac{d\dot{y}}{dt}$$
 sofort: $\frac{dv}{dt} = -g \cdot \frac{\dot{y}}{v} - v \cdot \psi(v, y)$.

Im Falle eines Extremums oder einer asymptotischen Annäherung von van einen endlichen Grenzwert gilt $\frac{dv}{dt} = 0$. Diese Bedingung ist also erfüllt, wenn

 $v^2 \cdot \psi(v, y) = -g \cdot \dot{y}.$

Die linke Seite dieser Gleichung ist stets positiv; da andererseits y nur auf dem absteigenden Ast negativ wird, ist der erste Teil von Satz 4 bereits bewiesen.

Daß dieser Punkt ein Geschwindigkeitsminimum ist, erkennt man leicht: $v \cdot \sin \vartheta$ und $v \cdot \cos \vartheta$ nehmen bis zum Gipfel sicher ab (vgl. Satz 1 und Satz 7, S. 74); infolgedessen wird auch v kleiner und kann an der ersten Stelle mit $\frac{dv}{dt} = 0$ nur ein Minimum $v = v_{\min}$ erreichen.

Wir betrachten nunmehr noch das Verhalten der Flugbahngeschwindigkeit in der Umgebung $t = +\infty$.

Aus der Beziehung (45a)

$$dt = -\frac{v}{g} \cdot \frac{d\vartheta}{\cos\vartheta}$$
, d. h. $t = -\int_{\mathbf{r}}^{\mathbf{v}} \frac{v \cdot \cos\vartheta}{g} \cdot \frac{d\vartheta}{\cos^2\vartheta}$

folgt, daß die Bedingung $t = +\infty$ notwendig $\cos^2 \vartheta = 0$, d. h. $\vartheta = -\frac{\pi}{2}$ nach sich zieht, da nach Satz 1 $v \cdot \cos \vartheta$ stets endlich bleibt. Damit ist auch Satz 5 bewiesen. Nun ist aber

$$\frac{d\vartheta}{\cos\vartheta} = \frac{g \cdot dv}{v \cdot \left| g \cdot \sin\vartheta + c \cdot \delta(y) \cdot v^2 \cdot K\left(v \cdot \left| \frac{\overline{T_0}}{T(y)} \right) \right| \right|},$$

wie Gleichung (45) sofort ergibt. Aus dieser Beziehung für $\frac{d\vartheta}{\cos\vartheta}$ folgt, daß der Integrand der linken Seite an der Stelle $\vartheta = -\frac{\pi}{2}$ singulär wird. Das ist auch für die rechte Seite zu fordern; somit v = 0 oder

$$\left|-g+c\cdot\delta(y)\cdot v^2\cdot K\left(v\cdot\right)\cdot \frac{T_0}{T(y)}\right|=0.$$

Diese Bedingungen betrachten wir für verschiedene Fälle.

a) Die Veränderlichkeit der Atmosphäre mit der Höhe werde vernachlässigt, d. h. es sei

$$c \cdot \delta(y) \cdot v^2 \cdot K\left(v \cdot \left| \left\langle \frac{\overline{T_0}}{T'(y)} \right\rangle = c^* \cdot f(v) \quad (c^* = \text{const}).$$

Dann geht die obige Bedingung über in

v = 0 oder $c^* \cdot f(v) = g$.

Die Bedingung v = 0 ist in diesem Falle unmöglich. Denn v = 0 heißt auch y = 0 für $t = +\infty$ oder $\vartheta = -\frac{\pi}{2}$. Andererseits ist aber

$$\frac{d\dot{y}}{dt} = -g - \sin\vartheta \cdot c^* \cdot f(v) \,.$$

Unter der Voraussetzung f(v) = 0 für v = 0 wäre also

$$\left(\frac{d\,\dot{y}}{dt}\right)_{t=+\infty} = -g.$$

Da also in diesem Falle die Kurve $\dot{y}(t)$ eine geneigte Asymptote hätte, könnte $\dot{y} = 0$ und damit v = 0, wie die Voraussetzung verlangt, nicht eintreten. — Es gilt somit

$$c^* \cdot f(v) = g,$$

d. h. für $t=+\infty$ strebt die Flugbahngeschwindigkeit einem Grenzwert v_k zu, der sich aus der Beziehung

$$(77) f(v_k) = \frac{g}{c^*}$$

ergibt. — Es leuchtet ohne weiteres ein, daß die Grenzgeschwindigkeit v_k aus (77) zur Charakterisierung des Geschosses, d. h. des c*-Wertes herangezogen werden kann.

b) Die Temperaturabnahme mit der Höhe werde vernachlässigt, dagegen erfolge die Luftgewichtsabnahme gemäß der Everlingschen Formel. Dann gilt

$$v = 0$$
 oder $c \cdot \delta_0 \cdot e^{-k \cdot y} \cdot f(v) = g$.

Wir wollen zeigen, daß beide Bedingungen äquivalent sind. Angenommen, v sei endlich für $t = +\infty$; dann ist wegen

$$e^{-ky} = \frac{g}{c \cdot \delta_0 \cdot f(v)}$$

auch y endlich. Das ist physikalisch sinnlos, da y bei noch dauernd wirksamer Geschwindigkeitskomponente nicht endlich bleiben kann. Es bleibt also nur die Möglichkeit $y = -\infty$; die Beziehung

$$e^{-ky} = rac{g}{c \cdot \delta_0 \cdot f(v)}$$

ergibt dann, daß v = 0 wird. Dabei muß wie oben vorausgesetzt werden, daß f(v) = 0 für v = 0 gilt.

c) Im Falle veränderlicher Temperaturen und Luftgewichte lassen sich keine allgemeingültigen Aussagen machen, da in diesem Falle der Grenzwert von v ganz vom Verhalten der Temperatur- und Luftgewichtsfunktion abhängt. Wir beschränken uns daher auf den Fall

$$T(y) = T_0 - \lambda \cdot y \text{ und } \delta(y) = \delta_0 \cdot \left(1 - \frac{\lambda}{T_0} \cdot y\right)^{\frac{1}{R \cdot \lambda} - 1}.$$

Dann gilt

$$v = 0 \quad \text{oder} \quad c \cdot \delta_0 \cdot \left(1 - \frac{\lambda}{T_0} y\right)^{\frac{1}{R \cdot \lambda} - 1} \cdot v^2 \cdot K \left[v \cdot \left(\frac{T_0}{T_0 - \lambda y}\right)^{\frac{1}{2}} \right] = g,$$

d. h.

$$v = 0 \text{ oder } c \cdot \delta_0 \cdot \left(1 - \frac{\lambda}{T_0} y\right)^{\frac{1}{R \cdot \lambda}} f \left[v \cdot \frac{1}{\left(1 - \frac{\lambda}{T_0} \cdot y\right)^{\frac{1}{2}}} \right] = g.$$
An der Stelle v_k sei $f[v \cdots]$ durch eine Potenz $(v \cdots)^{\alpha}$ darstellbar*. Dann ist

$$v = 0$$
 oder $c \cdot \delta_{\theta} \cdot \left(\frac{T_0 - \lambda \cdot y}{T_0}\right)^{\frac{1}{R+\lambda} - \frac{a}{2}} \cdot v_k^a = g$

Der Erfahrung gemäß liegt $\frac{1}{R \cdot \lambda}$ etwa bei 7, während $1 \leq a \leq 7$. Der Fall, daß y und v gleichzeitig endlich sind, ist wie oben unmöglich. Somit ergibt sich auch hier $y = -\infty$ und $r_k = 0$.

Die Flugbahngeschwindigkeit hat also einen Verlauf, wie er in Abb. 13 qualitativ dargestellt ist. Dabei stellt die Kurve I den Verlauf für kon-

Abb. 13. Geschwindigkeitsverlauf

stantes $\delta(y)$ und T(y) dar, während II den Verlauf für variables Luftgewicht veranschaulicht. Daneben kann diese Kurve je nach dem Aussehen der Funktion T(y) noch manche andere Gestalt annehmen.

6. In gleichen Flughöhen ist die horizontale Entfernung x_s des Gipfelpunktes vom Anfangspunkt größer als seine Entfernung $x - x_s$ vom Endpunkt der Bahn in dieser Höhe.

Beweis: Es gilt: $x_s = \int_0^r \frac{v^2}{g} \cdot d\vartheta$; $x - x_s = \int_0^\omega \frac{v^2}{g} \cdot d\vartheta$. Beide Integrale sind endlich, da v^2 stets endlich bleibt. Infolgedessen müssen auch die Integrale $x_s = \int_y^{y_s} \left(\frac{dy}{tg\vartheta}\right)_1$; $x - x_s = \int_y^{y_s} \left(\frac{dy}{tg\vartheta}\right)_2$ endlich sein. Nun

^{*} Das Widerstandsgesetz von Siacci und die Zonenpotenzgesetze legen a = 2 nahe. In diesen Gesetzen ist überdies stets a < 7. Das theoretische Widerstandsgesetz von Lorenz ergibt a = 1.

ist aber $| \operatorname{tg} \vartheta |$ für gleiche y auf dem aufsteigenden Ast kleiner als auf dem absteigenden (Satz 2), d. h. es gilt $x_s > x - x_s$.

7. In gleichen Flughöhen ist die Flugzeit t_s vom Anfangspunkt bis zum Gipfel kürzer als die Flugzeit $(t - t_s)$ vom Gipfel bis zum Endpunkt in dieser Höhe.

Beweis: Aus $\frac{dt}{d\vartheta} = -\frac{v}{g \cdot \cos \vartheta}$ folgt $t_s = \int_{-\infty}^{\infty} \frac{v \cdot d\vartheta}{g \cdot \cos \vartheta}; \quad t - t_s = \int_{-\infty}^{\infty} \frac{v \cdot d\vartheta}{g \cdot \cos \vartheta}.$

Beide Integrale sind endlich, also auch die Integrale

$$t_s = \int_{y}^{y_s} \left(\frac{dy}{v \cdot \sin \vartheta} \right)_1; \quad t - t_s = \int_{y}^{y_s} \left(\frac{dy}{v \cdot \sin \vartheta} \right)_2.$$

Nun ist aber auf dem aufsteigenden Ast in gleichen Höhen $v \cdot \sin \vartheta$ größer als auf dem absteigenden. Man erkennt das so: Es ist

$$\frac{d\left(v\sin\vartheta\right)}{dt} = -g - c \cdot \delta\left(y\right) \cdot v^{2} \cdot K\left(v \cdot \left| \frac{T_{0}}{T\left(y\right)} \right| \right) \cdot \sin\vartheta$$

und $v \cdot \sin \vartheta = \frac{dy}{dt}$. Also ist

$$\frac{1}{2} \left(v^2 \cdot \sin^2 \vartheta \right) = \int_{y}^{y_s} \left[g + c \cdot \delta(y) \cdot v^2 \cdot K\left(v \cdot \left| \frac{T_0}{T(y)} \right) \cdot \sin \vartheta \right| \cdot dy \right].$$

Da auf dem aufsteigenden Ast sin ϑ positiv, auf dem absteigenden aber negativ ist, werden die Werte des Integranden im ersten Falle größer; das gleiche gilt dann auch für das Integral selber, womit die Behauptung bewiesen ist.

Zur Veranschaulichung der angeführten Sätze wird nachstehend eine Flugbahn wiedergegeben. Diese gilt für ein Geschoß von etwa 10 cm Kaliber, das unter einem Abgangswinkel $\varphi = 41,4^{\circ}$ mit einer Anfangsgeschwindigkeit $v_0 = 381,6$ m/s verfeuert wird. Sie wurde berechnet mit dem amerikanischen Widerstandsgesetz, bei dem $\log(c \cdot \delta_0) = -0.4$ gesetzt, Luftgewichtsabnahme mit der Höhe gemäß einer Everlingschen Formel $\delta(y) = \delta_0 \cdot e^{-0,0001036 \cdot y}$ und konstante Temperatur angenommen wurden.

Höhe	Aufsteigender Ast					Absteigender Ast						
y	x	t	x	ý	v	θ		t	ż	ÿ	v	$-\vartheta$
(m)	(m)	(s)	(m/s)	(m/s)	(m/s)	(Grad)	(m)	(s)	(m/s)	(m/s)	(m/s)	(Grad)
2222	4578	20.24	200,0	0	200.0	0	4578	20,24	200.0	0	200,0	0
2217	4377	19.24	201,7	9.8	201.9	2,8	4777	21,24	198.3	9,8	198,5	2.8
2202	4175	18,24	203,5	19.7	204,5	5,5	4976	22,24	196,7	19,5	197,7	5,7
2178	3972	17.25	205,3	29.7	207,4	8,2	5173	23,25	195,0	29,1	197,2	8,5
2144	3768	16,26	207,2	39,6	211,0	10,8	5368	24.26	193,2	38,7	197.0	11.3
2111	3612	15.51	208,7	47.3	214,0	12.8	5516	25.04	192.1	46.0	197,5	13.5
2000	3203	13,57	212,6	67,4	223.0	17,6	5899	27,04	188,8	64.8	199,6	18.9
1889	2885	12.09	215.9	83.0	231,3	21.0	6188	28.58	186.2	78.9	202,2	23,0
1667	2377	9.77	221,7	108.6	246,9	26.1	6642	31.05	181.9	101,1	208,1	29.1
1444	1958	7,89	227.2	129,5	261,5	29,7	7006	33,08	178.3	118.6	214.1	33.6
1111	1419	5.58	236.1	157.8	284,0	33.8	7460	35.65	173.6	140.3	223,2	38,9
556	662	2,48	254,8	201,8	325.0	38.4	8070	39.24	166.2	168,9	237.0	45.4
0	0	0	286,0	252,6	381,6	41,4	8571	42,32	159,3	191,5	249,1	50,2

Wir wollen später gelegentlich auf diese Bahn zurückgreifen und werden sie daher kurz als "Musterbahn" bezeichnen.

b) Genäherte Bestimmung des Flugbahnverlaufs

1. Wir wollen die Flugbahn in ein solches Paar von Flugbahnen einordnen, deren Verlauf bekannt ist und in bestimmter Weise mit der zu betrachtenden Flugbahn zusammenhängt.

Jede Flugbahn läßt sich stückweise beliebig eng einschachteln zwischen zwei Flugbahnen, deren Verlauf mathematisch in endlicher Form angegeben werden kann. Denn in den Differentialgleichungen (75) kann man auf dem betrachteten Bogen $\psi(v, y)$ einmal durch einen größten Wert $\psi_{\max} = \text{const.}$ und einmal durch einen kleinsten Wert $\psi_{\min} = \text{const.}$ ersetzen. Die Differentialgleichungen werden dann integrabel. Für $\psi_{\nu} = \text{const.}$ ($\nu = \max$ oder min) erhält man unschwer

$$\begin{vmatrix} \dot{x} = v_0 \cdot \cos \varphi \cdot e^{-\psi_y \cdot t}; \\ \dot{y} = -\frac{g}{\psi_r} + \left(v_0 \cdot \sin \varphi + \frac{g}{\psi_r} \right) \cdot e^{-\psi_r \cdot t} \\ x = \frac{1}{\psi_r} \cdot v_0 \cdot \cos \varphi \cdot \left(1 - e^{-\psi_r \cdot t} \right); \\ y = -\frac{g}{\psi_r} \cdot t + \left(v_0 \cdot \sin \varphi + \frac{g}{\psi_r} \right) \cdot \frac{1 - e^{-\psi_r \cdot t}}{\psi_r} \end{vmatrix}$$

Für $\psi_{\nu} = \psi_{\max}$ und $\psi_{\nu} = \psi_{\min}$ ergibt sich dann das Paar der Extremalbahnen. ψ_{max} und ψ_{min} bestimmt man leicht so: Wenn es sich z. B. nur um das Bahnstück zwischen Anfangspunkt und Endpunkt der Flugbahn in der Mündungswaagerechten handelt, dann hat im allgemeinen $\psi(v, y)$ im Nullpunkt seinen größten Wert. Auf der Bahn (78) mit $\psi_r = \psi_{\max}$ kann man ein $\overline{\psi}_{\min}$ bestimmen, das sicher kleiner ist als der tatsächliche Wert ψ_{\min} der wahren Bahn. Es gilt also entlang der ganzen Flugbahn bis zum Endpunkt stets $\psi_{\max} \geq \psi(v, y) > \bar{\psi}_{\min}$, d. h. die Bahn mit ψ_{\max} ist mit einem durchweg zu großen Widerstand berechnet, muß also dauernd unter der wirklichen Bahn verlaufen; das umgekehrte ist der Fall bei der Bahn mit $\ddot{\psi}_{\min}$. Diese Methode kann von Nutzen sein, wenn es darauf ankommt, schnell eine ungefähre Abschätzung der zu erwartenden Werte vorzunehmen. Sie kann sogar zur genauen Integration der ballistischen Differentialgleichungen dienen, wenn man die Grenzpunkte nahe genug aneinanderrücken läßt. Darauf beruht z. B. der Vorschlag von de Jong⁽⁵⁶⁾, der Flakschußtafeln auf diese Weise berechnen will (vgl. S. 112).

Beispiel. Das Verfahren werde geprüft an unserer Musterbahn auf dem Bogenstück zwischen Anfangspunkt und Gipfelpunkt. $\psi(v, y)$ ist im Anfang der Bahn $\psi_{\max} = c \cdot \delta_0 \cdot \frac{f(v)}{v} = 0,06131$, wie man mit Hilfe der auf S. 31 angegebenen Tabelle leicht feststellt. Im Gipfelpunkt ist $\dot{y} = 0$, d. h. nach (78) $\psi_{\max} \cdot t_s = \ln\left(\frac{\psi_{\max}}{g} \cdot v_0 \cdot \sin\varphi + 1\right)$. Somit wird $t_s = 15,461$ s, also $\dot{x}_s = v_s = 110,84$ m/s. Außerdem erhält man noch $x_s = 2857$ m, $y_s = 1649$ m*. Zur Bildung von ψ_{\min} dient v_s , das auf dem betrachteten Bogenstück den kleinsten Geschwindigkeitswert darstellt: $\bar{\psi}_{\min} = c \cdot \delta(y_s) \cdot \frac{f(v_s)}{v_s} = 0,005462$. Damit erhalten wir nacheinander wie oben: $t_s = 24,118$ s, $v_s = 250,71$ m/s, $x_s = 6461$ m, $y_s = 2969$ m. Eine Gegenüberstellung gibt die auf S. 77 folgende Zahlentafel.

Der in dieser Tafel noch aufgeführte Wert μ stellt den Faktor dar, mit dem das betreffende wahre Element multipliziert werden muß, um die halbe Summe der Werte des gleichen Elements für ψ_{\max} und ψ_{\min} zu erhalten $\left| z. B. \mu \cdot x = \frac{1}{2} \cdot \left\{ x(\psi_{\max}) + x(\psi_{\min}) \right\} \right|$. — Für verhältnismäßig rohe Rechnungen kann man allgemein, wie auch dieses Beispiel zeigt, die wirkliche Flugbahn als den Ort der Punkte betrachten, die auf der Halbierungslinie der beiden entsprechenden Elemente der Bahnen mit ψ_{\max} und ψ_{\min} liegen.

^{*} Die numerischen Werte der Exponentialfunktionen sind z.B. in der Tabellensammlung von Hayashi⁽³⁸⁾ angegeben (vgl. dazu auch die Zahlentafeln im Anhang).

Ele- ment	1	Benutztes (ļ	Mittel-	
	$\psi_{ m max}$	$\psi\left(v,y ight)$	ψ_{\min}	μ	werte
x	2857	4578	6461	1,018	4659
y	1649	2222	2969	1,039	2309
t	15,461	20,24	24,118	0,978	19,79
v_s	110,84	200,0	250,71	0,904	180,8

2. Die soeben beschriebene Näherungsbestimmung des Flugbahnverlaufs trug im gewissen Umfange auch dem dynamischen Verhalten der Flugbahn Rechnung, indem nur der genaue Luftwiderstand verändert und durch eine lineare Funktion der Geschwindigkeit ersetzt wurde. Die Folge war verhältnismäßig gute Annäherung nicht nur der geometrischen Elemente (x, y) der Flugbahn, sondern auch (in freilich ungenauerem Maße) der dynamischen Elemente (v, t). Man kann nun daran denken, die Resultierende der gesamten auf das fliegende Geschoß wirkenden Kräfte, also der Schwerkraft und des Luftwiderstandes vorzugsweise, durch Mittelwerte zu ersetzen. In der Tat ist dieser Weg verschiedentlich beschritten worden. Dabei ist selbstverständlich nur brauchbare Annäherung für die geometrischen Elemente zu erwarten. - So versucht z. B. Rothe⁽⁵⁸⁾, die Resultante aus Schwerkraft und Luftwiderstand durch eine Konstante nach Größe und Richtung für die gesamte Flugbahn zu ersetzen. Nennen wir diese Resultante γ und ihren Winkel mit der Horinzontalen ρ , so gelten die Differentialgleichungen

$$\ddot{x} = -\gamma \cdot \cos \varrho; \quad \ddot{y} = -\gamma \cdot \sin \varrho.$$

Integriert ergibt dieses

(79)
$$\begin{vmatrix} x = v_0 \cdot \cos \varphi \cdot t - \gamma \cdot \cos \varrho \cdot \frac{t^2}{2}; \\ y = v_0 \cdot \sin \varphi \cdot t - \gamma \cdot \sin \varrho \cdot \frac{t^2}{2} \end{vmatrix}$$

Die Gesamtflugzeit T und die Schußweite X werden dann für y = 0:

(79 a)
$$\begin{cases} T = \frac{2 v_0 \cdot \sin \varphi}{\gamma \cdot \sin \varrho}; \quad X = \frac{v_0^2 \cdot \sin 2\varphi}{\gamma \cdot \sin \varrho} - \frac{2 v_0^2 \cdot \sin^2 \varphi \cdot \cos \varrho}{\gamma \cdot \sin^2 \varrho} \\ = \frac{2 v_0^2}{\gamma \cdot \sin^2 \varrho} \cdot \sin \varphi \cdot \sin (\varrho - \varphi) \end{cases}$$

und die Gipfelwerte

(79 b)
$$\begin{cases} t_s = \frac{r_0 \cdot \sin \varphi}{\gamma \cdot \sin \varrho} = \frac{1}{2} T; \quad y_s = \frac{\gamma \cdot \sin \varrho}{8} \cdot T^2; \\ x_s = \frac{r_0^2}{2\gamma \cdot \sin^2 \varrho} \cdot (\sin 2\varphi \cdot \sin \varrho - \sin^2 \varphi \cdot \cos \varrho). \end{cases}$$

Diese Formeln stimmen in T, t_s und y_s formal mit den bereits bekannten des luftleeren Raumes überein. Man erkennt unschwer, daß durch (79) eine schiefliegende Parabel definiert wird, deren Symmetrieachse um den Winkel ϱ gegen die Horizontale geneigt ist; faßt man also (90 — ϱ) als Geländewinkel auf, dann folgt auch für X formale Übereinstimmung mit der Formel (61) für die Schrägentfernung eines Flugbahnpunktes.

3. Eine praktische Anwendung dieser schiefliegenden Parabel hat neuerdings R. Schmidt⁽⁵⁹⁾⁽³⁰⁾ gegeben. Er gibt die Schußweite und die Flugzeit vor, so daß y_s nach der Formel (60), also zu $y_s \approx 1.25 \cdot T^2$, bestimmt werden kann*. Die Parabeleigenschaft, daß die Verbindungslinie der Mitten zweier Parabeltangenten zwischen Berührungspunkt und Schnittpunkt eine neue Parabeltangente ergibt, führt dann zu folgender Konstruktion: Bekannt

sind φ , X, y_s (wegen T); der eine Schenkel des Winkels φ wird gleich der Schußweite OE (Abb. 14) gemacht, der andere in A von einer im Abstande y_s zu OE parallel verlaufenden Geraden g geschnitten. Man verlängert OA über sich selbst hinaus bis B, so daß OA = A B wird. Der Winkel OEB ist

^{*} Diese Werte können aus jeder Schußtafel entnommen werden.

dann der Fallwinkel ω . EB schneidet die Parallele g in C. Die Mitte von AC ist der Gipfelpunkt G der Flugbahn. Die Halbierungspunkte von OA, AG, GC, CE seien bzw. A_2 , A_1 , C_1 , C_2 . Die Geraden $A_1 A_2$ und $C_1 C_2$ sind neue Parabeltangenten, deren Mitten M_1 und M_2 die Berührungspunkte der Parabel sind. Durch fortgesetzte Anwendung dieses Verfahrens kann man beliebig viele Flugbahnpunkte mit den zugehörigen Flugbahntangenten bestimmen. — Man bestimmt die Richtung der Parabelachse, d. h. der oben erwähnten Resultierenden ohne weiteres aus

$$\operatorname{tg} \varrho = \frac{4 y_s}{4 y_s \cdot \operatorname{cotg} \varphi - X};$$

ferner: $x_s = \frac{1}{4} X + y_s \cdot \operatorname{ctg} \varphi; \quad \operatorname{ctg} \omega = \frac{X}{2 y_s} - \operatorname{ctg} \varphi.$

Der Leser prüfe an diesem Verfahren etwa den Verlauf unserer Musterbahn. Beispielsweise ergibt sich $\omega = 52,1^{\circ}$, während der richtige Wert $\omega = 50,2^{\circ}$ ist; $x_s = 4683$ m, richtig $x_s = 4578$ m.

§ 7. Ähnlichkeitsgesetze für Flugbahnen

a) Einfachster Fall für Potenzgesetze

Zwei Flugbahnen werden ähnlich genannt, wenn in Punkten gleicher Tangentenneigung entlang der ganzen Flugbahn jedes Bahnelement der einen Bahn in einem konstanten Verhältnis zum gleichen Element der anderen Bahn steht. Dieses Verhältnis kann für verschiedene Elemente von verschiedener Größe sein.

Wir betrachten zunächst den einfachsten Fall, daß der Widerstand proportional einem konstanten Beiwert c_n und der n^{ten} Potenz der Geschwindigkeit sei⁽⁶¹⁾. Die Differentialgleichungen der Bewegung lauten dann

$$\frac{d(v \cdot \cos \vartheta)}{d\vartheta} = \frac{c_n}{g} \cdot v^{n+1} ; \quad \frac{dx}{d\vartheta} = -\frac{v^2}{g} ;$$
$$\frac{dy}{d\vartheta} = -\frac{v^2}{g} \cdot \operatorname{tg} \vartheta ; \quad \frac{dt}{d\vartheta} = -\frac{v}{g} \cdot \frac{1}{\cos \vartheta} .$$

In diese Gleichungen führen wir eine neue Veränderliche $w = \sqrt[n]{c_n} \cdot v$ ein, so daß die Hodographengleichung lautet

$$\frac{d\left(w\cdot\cos\vartheta\right)}{d\vartheta}=\frac{w}{g}\cdot u^{\eta}.$$

Bei vorgegebenen Anfangswerten $\vartheta = \varphi$, $w(\varphi) = w_0$ usw. ist die Lösung $w = w(\vartheta, w_0, \varphi)$. Wenn also

(80)
$$w_0 = \sqrt[n]{c_n} \cdot v_0 = \text{const}, \quad \text{d. h.} \quad v_0^n : \dot{v_0}^n = \dot{c}_n : c_n$$

bleibt, ist stets dieselbe Lösung wvorhanden, wie auch v_0 und \bar{v}_0 sein mögen. — Werden weiter die neuen Veränderlichen

$$\xi = \sqrt[n]{c_n^2} \cdot x, \quad \eta = \sqrt[n]{c_n^2} \cdot y \quad \text{und} \quad \tau = \sqrt[n]{c_n} \cdot t$$

eingeführt, so erkennt man, daß wegen

$$\frac{d\xi}{d\vartheta} = -\frac{w^2}{g}; \quad \frac{d\eta}{d\vartheta} = -\frac{w^2}{g} \cdot \operatorname{tg} \vartheta; \quad \frac{d\tau}{d\vartheta} = -\frac{w}{g} \cdot \frac{1}{\cos\vartheta}$$

auch besteht:

(81)
$$\begin{cases} \overset{n}{\sqrt{c_n^2}} \cdot x = \text{const}; \quad \overset{n}{\sqrt{c_n^2}} \cdot y = \text{const}, \\ \text{d. h.} \qquad x: \bar{x} = y: \bar{y} = v_0^2: \bar{v}_0^2 = \overset{n}{\sqrt{\bar{c}_n^2}}: \overset{n}{\sqrt{\bar{c}_n^2}} \\ \text{und} \qquad \overset{n}{\sqrt{c_n}} \cdot t = \text{const}, \quad \text{d. h.} \qquad t: \bar{t} = v_0: \bar{v}_0 = \overset{n}{\sqrt{\bar{c}_n}}: \overset{n}{\sqrt{c_n}} \\ \text{und schließlich} \qquad v: \bar{v} = v_0: \bar{v}_0. \end{cases}$$

Somit gilt für Potenzgesetze der Form $c_n \cdot v^n$ der Satz: Verhalten sich die n^{ten} Potenzen der Anfangsgeschwindigkeiten umgekehrt wie die ballistischen Beiwerte und sind die Abgangswinkel gleich, so werden die Flugbahnen ähnlich. Die Horizontalentfernungen und die Flughöhen verhalten sich wie die Quadrate der Anfangsgeschwindigkeiten, die Flugzeiten wie die Anfangsgeschwindigkeiten selber.

Eine Anwendung dieses Satzes hat Röggla⁽⁶²⁾ für Mörser und Minenwerfer gemacht, die bekanntlich mit kleineren Anfangsgeschwindigkeiten schießen und für die daher das quadratische Widerstandsgesetz näherungsweise gilt. In diesem Falle wird also wegen n=2

(82)
$$x: \bar{x} = y: \bar{y} = c_2: c_2 = q: \bar{q}; \quad v: \bar{v} = t: t = v_0: \bar{v}_0$$

wenn mit q die Querschnittsbelastung bezeichnet wird und Luftgewicht und Formfaktor in c_n und c_n als gleich angenommen werden. **Beispiel.** Ein 8-cm-Minenwerfer habe bei einer Anfangsgeschwindigkeit $v_0 = 200 \text{ m/s}$ und einer Erhöhung $\varphi = 43^{\circ}$ bei einem Geschoßgewicht von 6 kg eine Schußweite von 3000 m. Welche Werte sind dann bei einem 10-cm-Werfer mit ähnlichem Geschoß von 10 kg Gewicht zu erwarten?

Zunächst ist
$$q = 1194 \text{ kg/m}^2$$
 und $\dot{q} = 1273 \text{ kg/m}^2$. $\overline{X} = \frac{q}{2} \cdot X$

= 3200 m. Weiter erhält man $\bar{v}_0 = 206,5$ m/s. — Würde man beim 8-cm-Geschoß die v_0 um 6,5 m/s erhöhen, so ergäbe sich aus der (allerdings genau nur für den luftleeren Raum gültigen) Formel (64) eine Schußweite von höchstens 3195 m (nach genauer Rechnung mit den Formeln von § 14c würde sich in diesem Falle als tatsächliche Schußweite ergeben: 3150 m). Beim 10-cm-Geschoß macht sich daher bereits die größere Querschnittsbelastung günstig bemerkbar.

b) Der Ähnlichkeitssatz von Langevin

Der soeben abgeleitete Ähnlichkeitssatz bezog sich auf den einfachsten Fall des Luftwiderstandes. Wir wollen daher jetzt die Frage untersuchen, unter welchen Bedingungen bei dem allgemeinen Widerstandsgesetz

W proportional
$$c \cdot \delta(y) \cdot v^2 \cdot K\left(v \cdot \left| \frac{T_u}{T(y)} \right)\right)$$

Flugbahnen einander ähnlich werden. Da, wie vorhin auseinandergesetzt wurde, Flugbahnpunkte mit gleicher Tangentenneigung verglichen werden müssen, gehen wir auch hier von der Differentialgleichung (45) (II. Form der Bewegungsgleichungen) aus. — Da nun

$$x^2 \cdot K\left(v \cdot \left| \sqrt{\frac{T_0}{T(y)}} \right) = \frac{T(y)}{T_0} \cdot \left(v \cdot \left| \frac{\overline{T_0}}{T(y)} \right)^2 \cdot K\left(v \cdot \left| \frac{\overline{T_0}}{\overline{T(y)}} \right) \right.$$
$$= \frac{T(y)}{T_0} \cdot w^2 \cdot K(w) \quad \left| \text{mit } w = v \cdot \left| \frac{\overline{T_0}}{\overline{T(y)}} \right|$$

und der Luftdruck p(y) proportional $\delta(y) \cdot T(y)$ ist, können wir unter Einführung eines neuen konstanten Beiwertes $c' = \frac{g \cdot p_0}{c \cdot \delta_0}$, der zuweilen als "Flugwert" bezeichnet wird, für (45) schreiben

$$\frac{d(v \cdot \cos \vartheta)}{d\vartheta} = \frac{p(y)}{c'} \cdot v \cdot f(w); \quad \frac{dy}{d\vartheta} = -\frac{v^2}{g} \cdot \operatorname{tg} \vartheta;$$
$$p(y) = p_b \cdot e^{-\int \frac{1}{R} \cdot \frac{dy}{T(y)}} \quad [\text{vgl. (16)}] \quad (R = \text{Gaskonstante})$$

Athen, Ballistik

c' ist, wie man erkennt, der Querschnittsbelastung proportional.

In diesen Formeln ist T_0 die Temperatur, für die die K(v)-Kurve ein- für allemal normiert wurde, während die mit dem Index *b* versehenen Werte die der Rechnung zugrunde gelegten tatsächlichen Bodenwerte bezeichnen.

Nun ist aber

$$p(y) = p_b \cdot e^{-\frac{1}{R \cdot T_0} \cdot \int \frac{T_0}{T(y)} \cdot dy} = p_b \cdot e^{-a \cdot \eta}$$

wenn $a = \frac{1}{R \cdot T_0}$ und $d\eta = \frac{T_0}{T(y)} \cdot dy$

gesetzt wird. Mit $v = w \cdot \sqrt{\frac{T(y)}{T_0}}$ erhält man dann schließlich

(83)
$$\begin{cases} \frac{d(w \cdot \cos \vartheta)}{d\vartheta} - \frac{w^3 \cdot \sin \vartheta}{2g} \cdot \frac{1}{T_0} \cdot \frac{dT}{dy} = \frac{p_b}{c'} \cdot e^{-a \cdot n} \cdot w \cdot /(w); \\ \frac{d\eta}{d\vartheta} = -\frac{w^3}{g} \cdot \operatorname{tg} \hat{\psi}. \end{cases}$$

Hier erkennt man nun folgendes: Ist $\frac{dT}{dy}$ eine gegebene Funktion von η , so ist die Lösung von (83) eindeutig in (w, η, ϑ) unabhängig von T_b bestimmt, wenn die Anfangswerte φ , w_0 , η_0 und der Parameter $\frac{p_b}{c'}$ gegeben sind. Es fragt sich zunächst, wie $\frac{dT}{dy}$ und damit T(y) beschaffen sein müssen, um diese 1. Bedingung zu erfüllen. Es sei

$$\frac{1}{T_0} \cdot \frac{dT}{dy} = \Phi(\eta),$$

wie die Voraussetzung verlangt. Wegen $d\eta = \frac{T_o}{T(y)} \cdot dy$ folgt dann aber

(84a)
$$\frac{d T(y)}{T(y)} = \Phi(\eta) \cdot d\eta$$
, d. h. $T(y) = T_b \cdot \Psi(\eta)$.

Damit wird aber

(84 b)
$$dy = \frac{T(y)}{T_0} \cdot d\eta = T_b \cdot \frac{\Psi(\eta)}{T_0} d\eta$$
, d.h. $y = T_b \cdot \psi(\eta)$,

und schließlich durch Verbindung von (84a) und (84b)

(85)
$$\frac{T(y)}{T_b} = \chi \left(\frac{y}{T_b}\right)$$

In dieser Form muß also der Temperaturverlauf darstellbar sein. Wir führen nun für x bzw. t noch die neuen Veränderlichen

(84 c)
$$d\xi = \frac{T_0}{T(y)} \cdot dx; \quad d\tau = \sqrt{\frac{T_0}{T(y)}} \cdot dt$$

ein. Das hat zwei Vorteile: Einmal ist dann $\frac{dy}{dx} = \frac{d\eta}{d\xi} = \operatorname{tg} \vartheta$, und zweitens wird $\frac{dw}{d\tau} = \sqrt{\left(\frac{d\xi}{d\tau}\right)^2 + \left(\frac{d\eta}{d\tau}\right)^2}$ in formaler Übereinstimmung mit den entsprechenden Ausdrücken in (x, y, t). Dadurch ergeben sich auch eindeutige Lösungen für ξ und τ in (ϑ, w, η) ; ihre Differentialgleichungen lauten dann

(86)
$$\frac{d\xi}{d\vartheta} = -\frac{w^2}{g}; \quad \frac{d\tau}{d\vartheta} = -\frac{w}{g \cdot \cos\vartheta}.$$

Entsprechend der Ableitung (84a) erhält man

(87)
$$\begin{cases} x = \int \frac{T(y)}{T_{o}} \cdot d\xi = T_{b} \cdot \int \frac{\Psi(\eta)}{T_{o}} \cdot d\xi; \\ t = \int \sqrt{\frac{T(y)}{T_{o}}} \cdot d\tau = \sqrt{T_{b}} \cdot \int \sqrt{\frac{\Psi(\eta)}{T_{o}}} \cdot d\tau. \end{cases}$$

Hier erkennt man leicht, daß die Differentialgleichungen (83) und (86) die Bewegung im System $(\xi, \eta, \tau, w, \vartheta, \frac{p_b}{c'})$ vollständig und eindeutig für beliebiges T_b festlegen, wenn nur der Temperaturverlauf die Form (85) hat, und die Anfangswerte für $\vartheta = \varphi$ festgelegt sind.

Wir betrachten nun 2 Flugbahnen, deren Differentialgleichungen der Bewegung beide die gleichen Formen (83) und (86) und die beide den gleichen Abgangswinkel φ haben. Da $\frac{p_b}{c'} = \text{const}$ und $w_0 = v_0 \cdot \sqrt{\frac{T_0}{T_1}} = v_0 \cdot \frac{s_0}{s_1} = \text{const}$ bleiben müssen, gilt

84 Kap. II. Luftleerer Raum. Flugbahneigenschaften. Ähnlichkeit

(88a)
$$\frac{p_b}{\vec{p}_b} = \frac{c'}{c'}$$
 und $\frac{v_0}{\bar{v}_0} = \frac{s_b}{\bar{s}_b} = \sqrt{\frac{T_b}{T_b}}$

Folglich bestehen dann wegen (84b) und (87) die weiteren Beziehungen

(88 b)
$$\frac{y}{\bar{y}} = \frac{x}{\bar{x}} = \frac{T_b}{\overline{T_b}}$$
 und $\frac{t}{\bar{t}} = \sqrt{\frac{T_b}{\overline{T_b}}} = \frac{s_b}{\bar{s}_b}$

Das Gesamtergebnis der vorstehenden Entwicklungen läßt sich in dem Satz von Langevin⁽⁶³⁾ zusammenfassen:

Wenn das Verhältnis der Höhentemperatur T(y) zur Bodentemperatur T_b eine beliebige Funktion des Quotienten $\frac{y}{T_b}$ ist, so sind Flugbahnen mit gleichem Abgangswinkel φ bei verschiedenen Bodentemperaturen T_b ähnlich, wenn sich die Querschnittsbelastungen wie die Bodenluftdrücke und die Anfangsgeschwindigkeiten sich wie die Schallgeschwindigkeiten am Boden verhalten. — Dann verhalten sich in beliebigen Bahnpunkten die Abszissen und Ordinaten wie die Temperaturen am Boden, die Geschoßgeschwindigkeiten und Flugzeiten wie die Schallgeschwindigkeiten am Boden. Insbesondere verhalten sich die Schußweiten (y = 0) wie die Bodentemperaturen.

Ein Temperaturverlauf z. B. der Form

$$T(y) = T_b - \lambda \cdot y,$$

wie wir ihn bisher betrachtet haben, genügt offenbar der Langevinschen Bedingung, da hier

$$\frac{T(y)}{T_b} = 1 - \lambda \cdot \frac{y}{T_b}$$

wird.

Beispiel. Ein 8,8-cm-Geschoß mit der Anfangsgeschwindigkeit $v_0 = 800 \text{ m/s}$ und einer Querschnittsbelastung von 1360 kg/m² erreiche bei einer Bodentemperatur von $+10^{\circ}$ C = 283° abs. und einem Bodenluftdruck von 760 mm Hg eine Schußweite von 20 km. — Wann wird bei ähnlicher Geschoßform und 1530 kg/m² Querschnittsbelastung die neue Flugbahn der ersten ähnlich, wenn die Bodentemperatur auf $+1^{\circ}$ C

§ 8. Zweite Zusammenfassung (Luftleerer Raum; Flugbahneigenschaften; Ähnlichkeit)

1. Die Formeln des luftleeren Raumes sind ein Spezialfall derjenigen des lufterfüllten mit verschwindendem Widerstand. — Gleichungen des luftleeren Raumes:

$$\begin{cases} x = v_0 \cdot \cos \varphi \cdot t; & y = v_0 \cdot \sin \varphi \cdot t - \frac{g}{2} \cdot t^2; \\ y = x \cdot \operatorname{tg} \varphi - \frac{g \cdot x^2}{2 v_0^2 \cdot \cos^2 \varphi} & \text{[Beliebiger Bahnpunkt];} \end{cases}$$

$$X = \frac{v_0^2 \cdot \sin 2\varphi}{g}; \quad T = \frac{2v_0 \cdot \sin \varphi}{g}; \quad v_e = v_0; \quad \omega = \varphi$$

[Endpunkt der Bahn (y = 0)];

$$\begin{vmatrix} x_s = \frac{v_0^2 \cdot \sin 2\varphi}{2g} = \frac{X}{2}; & t_s = \frac{v_0 \cdot \sin \varphi}{g} = \frac{T}{2}; \\ y_s = \frac{v_0^2 \cdot \sin^2 \varphi}{2g} = \frac{g}{8} \cdot T^2; & v_s = v_0 \cdot \cos \varphi \quad [\text{Gipfelpunkt} (\vartheta = 0)]; \\ R = \frac{2v_0^2}{g} \cdot \frac{1}{\cos^2 \gamma} \cdot \cos \varphi \cdot \sin (\varphi - \gamma) \quad [\text{Entfernung eines Bahnpunktes} \\ \text{vom Anfangspunkt; } \gamma = \text{Geländewinkel}]. \end{aligned}$$

Bei kleinen Änderungen der Anfangsgeschwindigkeit und des Abgangswinkels gelten die Differenzenformeln

$$\frac{\Delta X}{X} = \frac{2\Delta v_0}{v_0} + 2\operatorname{ctg} 2\varphi \cdot \Delta\varphi; \quad \frac{\Delta T}{T} = \frac{\Delta v_0}{v_0} + \operatorname{ctg} \varphi \cdot \Delta\varphi;$$
$$\frac{\Delta R}{R} = \frac{2\Delta v_0}{v_0} + \frac{\cos\left(2\varphi - \gamma\right)}{\cos\varphi \cdot \sin\left(\varphi - \gamma\right)} \cdot \Delta\varphi + \left[2\operatorname{tg} \gamma - \operatorname{ctg}\left(\varphi - \gamma\right)\right] \cdot \Delta\gamma.$$

2. Bei Berücksichtigung der Schwerkraftabnahme mit der Höhe gelten allgemein für die berichtigte Bahn die Formeln

$$\ddot{x} = \ddot{z} - \frac{g}{R} \cdot x; \quad \dot{y} = (\ddot{y} + g) - g \cdot \left(1 - \frac{2}{R} \cdot g\right); \quad \ddot{z} = \ddot{z} - \frac{g}{R} \cdot z,$$

wo $(\mathfrak{x}, \mathfrak{y}, \mathfrak{z})$ die Koordinaten der unberichtigten Bahn (auch im lufterfüllten Raum) sind. Speziell für den luftleeren Raum ist

$$\ddot{z} = \ddot{y} + g = \ddot{z} = 0.$$

Es ergibt sich die Schußweite

$$X = v_0 \cdot \cos \varphi \cdot \sqrt{\frac{R}{g}} \cdot \sin \left(\sqrt{\frac{g}{R}} \cdot T \right),$$
wo die Flugzeit $T = \sqrt{\frac{2R}{g}} \cdot \operatorname{Ars} \left(v_0 \cdot \sin \varphi \cdot \sqrt{\frac{2}{g \cdot R}} \right).$

X und T müssen noch um die Differenzen ΔX und ΔT verbessert werden, die sich aus der Kugelgestalt der Erde ergeben. — Soll die in (x, y, z)erhaltene Bahn außerdem noch für den Einfluß der Zentrifugalkraft und Corioliskraft berichtigt werden, so gelten im Koordinatensystem (X, Y, Z) die Differentialgleichungen

$$\ddot{X} = \ddot{\xi} + n^2 \cdot X - 2n \cdot \dot{Y}; \quad \ddot{Y} = \ddot{\eta} + n^2 \cdot Y + 2n \cdot \dot{X}; \quad \ddot{Z} = \ddot{\zeta},$$

wo (ξ, η, ζ) die Koordinaten der unberichtigten Flugbahn sind (auch im lufterfüllten Raum). Es wird $Z = \zeta$, d. h. in Richtung der Erdachse findet eine Veränderung nicht statt. Mit

 $X + i \cdot Y = W, \quad \xi + i \cdot \eta = \psi$

ergibt sich die Differentialgleichung im Komplexen

 $\ddot{W} - 2 n \cdot i \cdot \dot{W} - n^2 \cdot W = \ddot{\psi}.$

Nach Integration und Trennung in Real- und Imaginärteil ergeben sich X und Y. Führt man in die Formeln die durch die Richtung der Schwerkraft bestimmte geographische Breite β_0 ein, so kann $n^2 \cdot W$ vernachlässigt werden. Für den luftleeren Raum folgen damit die Formeln

$$\Delta X = \frac{4n \cdot v_0^3 \cdot \cos\beta_0 \cdot \sin\varphi}{3g^2} \cdot [4\cos^2\varphi - 1] \cdot \sin \alpha$$

[Schußweitenvergrößerung],

$$\Delta Z = \frac{4 n \cdot v_0^3}{3 g^2} \cdot \sin^2 \varphi \cdot [3 \cos \varphi \cdot \sin \beta_0 + \sin \varphi \cdot \cos \beta_0 \cdot \cos \alpha]$$

[Rechtsabweichung],

$$\varDelta T = 2 T \cdot \cos \varphi \cdot \cos \beta_0 \cdot \sin a \cdot \frac{n \cdot v_0}{g}$$
 [Flugzeitvergrößerung],

die auch mit gewisser Näherung im lufterfüllten Raum gelten.

3. Bei jeder Flugbahn des lufterfüllten Raumes gelten für Punkte, die in gleicher Höhe liegen, die Ungleichungen

[Beliebiger Punkt];

$$\begin{array}{l} |x_s > X - x_s; \ t_s < T - t_s; \ \varphi < \omega; \ v_0 > v_e; \ v_0 \cos \varphi > v_e \cdot \cos \omega; \\ |v_0 \cdot \sin \varphi > v_e \cdot \sin \omega \end{array}$$
[Endpunkt].

Der Index 1 bezeichnet Punkte des aufsteigenden, der Index 2 Punkte des absteigenden Flugbahnastes.

Das Geschwindigkeitsminimum wird erst auf dem absteigenden Ast erreicht. Bei Bahnen mit konstanter Temperatur und Luftdichte strebt die Geschwindigkeit einem endlichen Grenzwert zu. Bei Berücksichtigung veränderlicher Höhentemperaturen und Luftgewichte geht die Geschwindigkeit möglicherweise nach Erreichen eines 2. Extremums (Maximum) gegen 0 bei Annahme der üblichen Temperatur- und Luftgewichtsformeln.

4. Ersetzt man in den Differentialgleichungen der Bewegung

$$\psi = c \cdot \delta(y) \cdot v \cdot K\left(v \cdot \sqrt{\frac{T_0}{T(y)}}\right)$$

einmal durch seinen größten, das andere Mal durch seinen kleinsten Wert und betrachtet man diese als konstant für die ganze Bahn, so ergeben sich damit 2 Flugbahnen, in deren Mitte die tatsächliche annähernd verläuft.

Ersetzt man die Resultierende aus Schwerkraft und Luftwiderstand durch eine Konstante nach Größe und Richtung, so ergibt sich eine schiefliegende Parabel; dies kann nach einem Verfahren von Schmidt zur näherungsweisen Bestimmung der Flugbahngestalt dienen.

5. I. Im einfachsten Falle, also bei konstanten Temperaturen und Luftgewichten, gilt für Potenzgesetze ein Ähnlichkeitsgesetz der Flugbahnen:

Wenn $\left(\frac{\tilde{v}_0}{v_0}\right)^n = \frac{\tilde{q}}{q}$ und $\tilde{\varphi} = \varphi$, dann gilt für gleiche Neigungswin-

kel
$$\vartheta$$
 der Flugbahntangenten, d. h. für $\overline{\vartheta} = \vartheta$: $\frac{\overline{x}}{x} = \frac{\overline{y}}{y} = \left(\frac{\overline{v}_0}{v_0}\right)^3$ und t \overline{v} \overline{v}_0

 $\frac{v}{t}=\frac{v}{v}=\frac{v_0}{v_0}.$

II. Bei Berücksichtigung höhenveränderlicher Temperaturen und Luftgewichte gilt der Ähnlichkeitssatz von Langevin: Wenn

$$T(y) = T_b \cdot \chi\left(\frac{y}{T_b}\right), \quad \check{\varphi} = \varphi, \quad \bar{p}_b : p_b = \check{q} : q, \quad \check{v}_0 : v_0 = \check{s}_b : s_b,$$

dann ist $\dot{x}: x = \bar{y}: y = T_b: T_b$ und $t: t = \dot{s}_b: s_b$.

88

Kap. III. Photogrammetrische Flugbahnvermessung

§ 9. Definitionen

Wir haben schon bei der Behandlung des Luftwiderstandes darauf hingewiesen, daß man in neuerer Zeit photogrammetrische Flugbahnvermessungen durchführt, um auf dieser Grundlage den Luftwiderstand zu bestimmen.

Bei der Schilderung der Luftwiderstandsbestimmung [$\S 1c$] aus der photographischen Flugbahnaufnahme war die Voraussetzung gemacht worden, daß y und x als Funktionen der Zeit tbekannt waren. Das ist nicht gerade nötig. Aus den Bewegungsgleichungen [$\S 3$] leitet man unschwer die folgenden Beziehungen nacheinander ab:

$$\frac{dy}{dx} = y' = \operatorname{tg} \vartheta; \quad v \cdot \cos \vartheta = \sqrt{-\frac{g}{y''}};$$

$$c \cdot \delta(y) \cdot v^2 \cdot K\left(v \cdot \sqrt{\frac{T_0}{T(y)}}\right) = -\frac{g}{2} \cdot \frac{y''' \cdot \sqrt{1+y'^2}}{y''^2};$$

$$dt = dx \cdot \sqrt{-\frac{y''}{g}}.$$

(Striche bedeuten Ableitungen nach x)

In der gleichen Weise wie für t als unabhängige Veränderliche kann man auch aus den Differenzen $\Delta' y, \Delta'' y, \ldots$ für äquidistante Δx die Ableitungen y', y'', \ldots und somit v und K(v) bestimmen. Besonders bei der Aufstellung der Schießbehelfe für Flugabwehrgeschütze, ferner zur Bestimmung von Sprengpunkten im Raum, die mittels einstellbarer Zeitzünder vom explodierenden Geschoß hervorgerufen werden, ist weiterhin photogrammetrische Flugbahnvermessung erforderlich. Wir wollen daher an dieser Stelle das Wichtigste der ballistischen Photogrammetrie darstellen. Die folgende Darstellung lehnt sich an eine allgemeine Untersuchung von W. Lohmann⁽⁶⁴⁾ an, der die Gebrauchsformeln und Fehlerbetrachtungen in einfachster Weise auf der Grundlage der Vektorrechnung abgeleitet hat*.

Zur photographischen Bestimmung der Flugbahn F (Abb. 15) befinden sich in L (linke Station) und R (rechte Station) je ein

Abb. 15. Photogrammetrische Flugbahnvermessung

Phototheodolit mit den Brennweiten f_l bzw. f_r . Die Horizontalentfernung der beiden Stationen sei b (Basis), ihr Höhenunterschied Δh . Die an sich hinter den Objektiven L und Rauf den Platten \mathfrak{P}_l und \mathfrak{P}_r entstehenden Bilder der Punkte Pder Flugbahn F denkt man sich als Diapositive im Brennweitenabstand f_l bzw. f_r vor den Objektiven L und R in den optischen Strahlengang richtig eingepaßt. Zur Definition der Lage von P führen wir folgende Koordinatensysteme und Einheitsvektoren ein:

^{*} Vgl. dazu auch: Sutor, Mitt. d. dtsch. Gesellsch. f. Photogrammetrie, H. 5 (März), 1940, S. 203.

(89)	Sys	teme	Linke Station	Rechte Station	Einheits- vektoren	
	Basis- systeme (fest in L bzw. R)	Raum- koordinaten	X_l, Y_l, Z_l	X_r, Y_r, Z_r	i — horizontal nach vorn j — vertikal	
		Bild- koordinaten	$\boldsymbol{u_l}, \boldsymbol{v_l}, \boldsymbol{w_l}$	u_r, v_r, w_r	f — horizontal von L zum Kar- tenpunkt von R	
	Kamera- systeme (fest auf \mathfrak{P}_l bzw. \mathfrak{P}_r)	Raum- koordinaten	$\dot{X}_l, \dot{Y}_l, \dot{Z}_l$	$\dot{X}_r, \dot{Y}_r, \dot{Z}_r$	\hat{i}_l bzw. \hat{i}_r : Op- tische Achse der Kamera in R bzw. L \hat{i}_r bzw. \hat{i}_r : Bild	
		Bild- koordinaten	$f_l, \hat{v}_l, \hat{w}_l$	$f_r, \hat{v}_r, \hat{w}_r$	ordinate auf \mathfrak{P}_l bzw. \mathfrak{P}_r $\hat{\mathfrak{f}}_l$ bzw. $\hat{\mathfrak{f}}_r$: Bild- abzisse auf \mathfrak{P}_l bzw. \mathfrak{P}_r	

Damit sind folgende Vektoren gegeben

(90)
(a) Bildvektor vom Objektiv zum Bildpunkt:

$$\mathbf{r}_{\nu} = \mathbf{i} \cdot u_{\nu} + \mathbf{j} \cdot v_{\nu} + \mathbf{t} \cdot w_{\nu} = \hat{\mathbf{i}}_{\nu} \cdot f_{\nu}$$

 $+ \mathbf{j}_{\nu} \cdot \hat{v}_{\nu} + \mathbf{t}_{\nu} \cdot \hat{w}_{\nu}$
 β) Ortsvektor vom Objektiv zum
Raumpunkt:
 $\hat{\mathbf{s}}_{\nu} = \mathbf{i} \cdot X_{\nu} + \mathbf{j} \cdot Y_{\nu} + \mathbf{t} \cdot Z_{\nu} = \mathbf{i}_{\nu} \cdot \hat{X}_{\nu}$
 $+ \mathbf{j}_{\nu} \cdot \hat{Y}_{\nu} + \mathbf{t}_{\nu} \cdot \hat{Z}_{\nu}$
 γ) Vektor von der linken zur rechten Sta-
tion:
 $\mathbf{a} = \mathbf{j} \cdot \Delta h + \mathbf{t} \cdot b = \mathbf{i}_{l} \cdot \hat{a}_{xl} + \mathbf{j}_{l} \cdot \hat{a}_{yl}$
 $+ \mathbf{t}_{l} \cdot \hat{a}_{zl}$

In diesen und den folgenden Gleichungen bezeichnet der Index ν stets: linke oder rechte Station. Man bezeichnet nun als Verschwenkung des Theodoliten seine Drehung um die senkrechte Achse (j). Der rechts herum positiv gezählte Verschwenkungswinkel sei ψ_{ν} . Als Kippung wird die Drehung des Theodoliten um die waagerechte Achse ($\hat{\mathbf{f}}_{\nu}$) bezeichnet; ω_{ν} sei der nach oben positiv gezählte Kippwinkel.

Somit gelten folgende Transformationsformeln

$$(91) \quad \begin{aligned} \mathbf{i} &= \mathbf{i}_{\nu} \cdot \cos \psi_{\nu} \cdot \cos \omega_{\nu} - \mathbf{j}_{\nu} \cdot \cos \psi_{\nu} \cdot \sin \omega_{\nu} - \mathbf{\hat{t}}_{\nu} \cdot \sin \psi_{\nu}; \\ \mathbf{j} &= \mathbf{i}_{\nu} \cdot \sin \omega_{\nu} + \mathbf{j}_{\nu} \cdot \cos \omega_{\nu}; \\ \mathbf{t} &= \mathbf{i}_{\nu} \cdot \sin \psi_{\nu} \cdot \cos \omega_{\nu} - \mathbf{j}_{\nu} \cdot \sin \psi_{\nu} \cdot \sin \omega_{\nu} + \mathbf{\hat{t}}_{\nu} \cdot \cos \psi_{\nu}; \\ \mathbf{i}_{\nu} &= \mathbf{i} \cdot \cos \psi_{\nu} \cdot \cos \omega_{\nu} + \mathbf{j} \cdot \sin \omega_{\nu} + \mathbf{t} \cdot \sin \psi_{\nu} \cdot \cos \omega_{\nu}; \\ \mathbf{j}_{\nu} &= -\mathbf{i} \cdot \cos \psi_{\nu} \cdot \sin \omega_{\nu} + \mathbf{j} \cdot \cos \omega_{\nu} - \mathbf{t} \cdot \sin \psi_{\nu} \cdot \sin \omega_{\nu}; \\ \mathbf{\hat{t}}_{\nu} &= -\mathbf{i} \cdot \sin \psi_{\nu} + \mathbf{t} \cdot \cos \psi_{\nu}. \end{aligned}$$

§ 10. Die Auswerteformeln

Nach Abb. 15 ist nun in dem Dreieck LRP

$$\hat{\mathfrak{s}}_l = \mathfrak{a} + \hat{\mathfrak{s}}_r;$$

ferner gilt

(93)
$$\mathfrak{S}_{l} = \lambda_{l} \cdot \mathfrak{r}_{l}; \quad \mathfrak{S}_{r} = \lambda_{r} \cdot \mathfrak{r}_{r},$$

weil \mathfrak{F}_{ν} und \mathfrak{r}_{ν} gleiche Richtung haben; dabei ist λ_{ν} ein Proportionalitätsfaktor, der nicht konstant ist, sondern von dem Durchstoßpunkt des Vektors \mathfrak{F}_{ν} durch die Platte \mathfrak{P}_{ν} , also von den Bildpunktkoordinaten abhängt. Durch Kombination von (92) und (93) erhält man die Grundgleichung der Raumbildmessung

(94)
$$\lambda_l \cdot \mathfrak{r}_l = \mathfrak{a} + \lambda_r \cdot \mathfrak{r}_r$$

Zur Elimination von λ_r multiplizieren wir diese Gleichung beiderseits vektoriell mit r_r :

(94a)
$$\lambda_l \cdot [\mathfrak{r}_l \mathfrak{r}_r] = [\mathfrak{a} \mathfrak{r}_r]$$

Aus dieser letzteren Gleichung läßt sich nun das System der Auswerteformeln gewinnen. Da die Aussage (94a) für die Vektoren $[r_i r_r]$ und $[a r_r]$, also auch für jede ihrer Komponenten gilt, erhalten wir drei Typen von Auswerteformeln.

Zunächst ergeben sich aus (90, α und γ) mit (91) sofort die Zusammenhänge der Bildkoordinaten f_{ν} , \hat{v}_{ν} , \hat{w}_{ν} im Kamerasystem mit den Bildkoordinaten u_{ν} , v_{ν} , w_{ν} im Basissystem, indem man die Gleichung (90 α) für r_{ν} nacheinander skalar mit i, j, f multipliziert:

(95)
$$\begin{aligned} u_{\nu} &= f_{\nu} \cdot \cos \psi_{\nu} \cdot \cos \omega_{\nu} \\ &- \hat{v}_{\nu} \cdot \cos \psi_{\nu} \cdot \sin \omega_{\nu} - \hat{w}_{\nu} \cdot \sin \psi_{\nu} \\ v_{\nu} &= f_{\nu} \cdot \sin \omega_{\nu} \\ &+ \hat{v}_{\nu} \cdot \cos \omega_{\nu} \\ w_{\nu} &= f_{\nu} \cdot \sin \psi_{\nu} \cdot \cos \omega_{\nu} \\ &- \hat{v}_{\nu} \cdot \sin \psi_{\nu} \cdot \sin \omega_{\nu} + \hat{w}_{\nu} \cdot \cos \psi_{\nu} \end{aligned}$$
($v = l \text{ oder } r$)

Entsprechend folgt aus der Gleichung (90 γ) mit (91) für den Vektor a bezüglich des Zusammenhanges seiner Komponenten im Kamerasystem mit denen des Basissystems*

(96)
$$\begin{cases} a_{xl} = \Delta h \cdot \sin \omega_l + b \cdot \sin \psi_l \cdot \cos \omega_l; \\ a_{yl} = \Delta h \cdot \cos \omega_l - b \cdot \sin \psi_l \cdot \sin \omega_l; \\ a_{zl} = + b \cdot \cos \psi_l. \end{cases}$$

Der allgemeinste Fall bei der ballistischen Photogrammetrie besteht nun darin, daß die optischen Achsen der beiden Phototheodolite windschief zueinander liegen, d. h. $\omega_l \pm \omega_r$, $\psi_l \pm \psi_r$ und daß die Objektive L und R verschiedene Brennweite haben, d. h. $f_l \pm f_r$. Für diesen allgemeinsten Fall sollen die Auswerteformeln formuliert werden. Die in (94a) vorkommenden Vektorprodukte können bei Berücksichtigung von (89) und (90) in folgender Form hingeschrieben werden

(97)
$$\begin{vmatrix} \mathbf{r}_{l}\mathbf{r}_{r} \end{bmatrix} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{f} \\ u_{l} & v_{l} & w_{l} \\ u_{r} & v_{r} & w_{r} \end{vmatrix}; \qquad [\mathfrak{a}\mathbf{r}_{r}] = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{f} \\ 0 & \Delta h & b \\ u_{r} & v_{r} & w_{r} \end{vmatrix}$$

* Es ist üblich, die linke Station als Hauptstation festzusetzen.

Diese Formulierung ist zweckmäßig, da beide Stationen nur das Einheitsvektorentripel (i, j. \sharp) gemeinsam haben. Durch skalare Multiplikation der Gleichungen (97) nacheinander mit i, j. \sharp erhält man drei Formeln

(98)
$$\lambda_{l} = \frac{\Delta h \cdot w_{r} - b \cdot v_{r}}{v_{l} \cdot w_{r} - v_{r} \cdot w_{l}} \quad \text{oder} \quad \left[\lambda_{l} = \frac{b \cdot u_{r}}{w_{l} \cdot u_{r} - w_{r} \cdot u_{l}} \right]$$
$$bzw. \quad \lambda_{l} = \frac{-\Delta h \cdot u_{r}}{u_{l} \cdot v_{r} - v_{l} \cdot u_{r}}$$

Hiervon wird man zweckmäßig die doppelt eingerahmte Form auswählen, da sie Δh nicht enthält. Nur für Kontrollzwecke wird man auch die beiden übrigen Formeln für λ_i benutzen. — Aus Gleichung (93) folgt durch skalare Multiplikation nacheinander mit i, j, \mathfrak{k} , wenn man (90 α und β) berücksichtigt

(99)
$$X_{l} = \lambda_{l} \cdot u_{l}; \quad Y_{l} = \lambda_{l} \cdot v_{l}; \quad Z_{l} = \lambda_{l} \cdot w_{l}$$

Damit sind die Auswerteformeln für die photogrammetrische Flugbahnaufnahme gefunden. Die Koordinaten (v_{ν}, \hat{w}_{ν}) werden durch Ausmessung auf den Platten \mathfrak{B}_{ν} bestimmt; f_{ν} sind die bekannten Brennweiten der Theodolitobjektive. Die Verwendung der doppelt eingerahmten Formeln (95), (98), (99) liefert dann die Raumkoordinaten des Flugbahnpunktes P(X, Y, Z). Aus diesen Formeln ergeben sich alle Sonderfälle durch Vereinfachung. Insbesondere ist z. B.

bei parallelen optischen Achsen: $\omega_l = \omega_r = \omega; \ \psi_l = \psi_r = \psi;$ im "gekippten Normalfall": $\psi_l = \psi_r = 0; \ \omega_l = \omega_r = \omega;$ im "ungekippten Normalfall": $\psi_l = \psi_r = 0; \ \omega_l = \omega_r = 0.$

§ 11. Meßfehler

Durch ungenaues Einrichten der Phototheodolite, d. h. Fehler in ψ_{ν} und ω_{ν} können leicht fehlerhafte Werte für X, Y, Z berechnet werden. Außerdem können weitere Fehler durch Verkantung der Theodolite (Drehung um die optische Achse \hat{i}_{ν}) entstehen. Traut man also einer Messung nicht, so setzt die Kontrolle der λ_i aus (98) ein. Stimmen diese Werte nicht genügend überein, dann müssen die Richtfehler bestimmt und berücksichtigt werden. Man stellt daher zwei Kontrollpunkte K_1 und K_2 auf (Abb. 15), deren Koordinaten genau vermessen sind. Vor der eigentlichen Flugbahnauswertung werden die Abbildungen der K_1 und K_2 ausgemessen und in Raumkoordinaten umgerechnet. Stimmen die so erhaltenen Werte mit den tatsächlichen nicht überein, so werden die Justierfehler bestimmt. Hier können wir den Weg nur im Prinzip andeuten; die Ausführung der Rechnung muß dem Leser überlassen bleiben*. - Die Verkantung wirkt sich in einer Drehung des Plattensystems (v_v, w_v) um seinen Nullpunkt (in der Photogrammetrie Hauptpunkt genannt) von der Größe z aus. positiv gegen den Uhrzeiger gezählt. In den Gleichungen (95) sind daher bei Verkantung die Koordinaten \hat{v}_v bzw. \hat{w}_v zu ersetzen durch $(\hat{v} \cdot \cos \varkappa_v + \hat{w}_v \cdot \sin \varkappa_v)$ bzw. $(-\hat{v}_v \cdot \sin \varkappa_v + \hat{w} \cdot \cos \varkappa_v)$. — Durch Einsetzen von (95) in (98) und dies in (99) entstehen die sechs Gleichungen

(100)
$$\begin{cases} X_{l_1} = f_{l_1}^{(1)}(\psi_l, \,\omega_l, \,\varkappa_l, \,\psi_r, \,\omega_r, \,\varkappa_r); & Y_{l_1} = f_{l_1}^{(2)}(\cdot \cdot \cdot); \\ Z_{l_1} = f_{l_1}^{(3)}(\ldots) \end{cases}$$

und die entsprechenden $X_{l_2} = \cdots, \cdots, \cdots$ für K_2 .

Differenziert man dies, so entsteht

$$dX_{l_1} = \frac{\partial f_{l_1}^{(1)}}{\partial \psi_l} \cdot d \psi_l + \frac{\partial f_{l_1}^{(1)}}{\partial \psi_r} d \psi_r + \dots + \dots + \frac{\partial f_{l_1}^{(1)}}{\partial \varkappa_r} \cdot d \varkappa_r$$

und die entsprechenden für Y_{l_i}, Z_{l_i} und $X_{l_i}, Y_{l_i}, Z_{l_i}$. Ersetzt man hierin die Differentiale $dX_{l_i}, \ldots, d\psi_l, \cdots$ durch die Differenzen $\Delta X_{l_i}, \ldots, \Delta \psi_l \ldots$, so entstehen bei 2 Kontrollpunkten sechs Gleichungen für die sechs Unbekannten $\Delta \psi_l, \Delta \psi_r, \ldots \Delta \varkappa_r$. Da die $\frac{\partial f}{\partial \psi}, \cdots$ aus (100) bestimmt werden können und durch Einsetzen der auf den Platten gemessenen Werte $\hat{v}_{\nu}, \hat{w}_{\nu}$ numerisch bekannt sind, da ferner $\Delta X_{l_i}, \ldots$ die Differenzen der berechneten Werte gegen die wahren Werte der Kontrollpunkte sind, sind somit die $\Delta \psi_l, \Delta \psi_r, \ldots \Delta \varkappa_r$ bekannt und müssen in der Rechnung

^{*} Zudem machen wir ausdrücklich darauf aufmerksam, daß die angedeutete Methode nur für sehr kleine Winkelfehler gilt.

dann durchgehend zu ψ_l, \ldots zugeschlagen werden. Bei der Aufstellung der Bestimmungsgleichungen der $\Delta \psi_l, \ldots$ sind aber weitgehende Vereinfachungen möglich.

§ 12. Beispiel

Gekippter Normalfall: $\omega = +30^{\circ}$, $\psi = 0$. Basislänge b = 215,23 m; Objektivbrennweiten $f_l = f_r = 375,81$ mm; Theodolite beide in gleicher Höhe ($\Delta h = 0$). Auf der linken Platte sind durch Stereokomparator bestimmt die Koordinaten $\hat{w}_l = 22,10$ mm, $\hat{v}_l = 88,84$ mm; auf der rechten Platte $\hat{w}_r = -29,23$ mm, $\hat{v}_r = 88,84$ mm. Man erhält damit:

$$u_l = u_r = 281,043 \text{ mm};$$
 $v_l = v_r = 264,843 \text{ mm};$
 $w_r = 22,10 \text{ mm};$ $w_r = -29,23 \text{ mm}.$

Somit ist nach der mittleren Formel (98) $\lambda_l = 4193,064$; das gleiche ergibt sich nach der ersten Formel (98), während die dritte unbestimmt $\left(\frac{0}{0}\right)$ wird. Für die Raumkoordinaten ergibt sich also

$$X_l = 1178,4 \text{ m};$$
 $Y_l = 1110,5 \text{ m};$ $Z_l = 92,7 \text{ m}.$

Diese Koordinaten müssen noch auf die Geschützmündung umgerechnet werden. In bezug auf die linke Station befinde sich die Geschützmündung um 1 m höher, 19 m zurück und 115 m rechts; dann sind die Koordinaten des Flugbahnpunktes, bezogen auf die Mündungswaagerechte:

$$x = 1197,4 \text{ m}; \quad y = 1109,5 \text{ m}; \quad z = -22,3 \text{ m}.$$

Kap. IV. Analytische Methoden zur Lösung der ballistischen Differentialgleichungen

§ 13. Allgemeine Einteilung der Lösungen

Die geschlossene Integration der ballistischen Differentialgleichungen der Bewegung bietet große mathematische Schwierigkeiten. Selbst wenn die Widerstandsfunktion f(v) durch einen einfachen mathematischen Ausdruck gegeben ist, wird die Integration nur unter ganz bestimmten Voraussetzungen möglich. In den übrigen Fällen ist man darauf angewiesen, die Integration numerisch, etwa mit Hilfe eines Iterationsverfahrens oder graphisch durchzuführen. Eine andere Möglichkeit ist die Integration durch Reihenentwicklung, die jedoch, wie wir ohne weiteres einsehen können, nur dann zu brauchbaren Ergebnissen führen kann, wenn die entstehenden Reihen so schnell konvergieren, daß die Verwendung nur weniger Reihenglieder möglich ist. Die dritte Möglichkeit besteht in einer künstlichen Umformung der Bewegungsgleichungen durch Näherungsannahmen, die zu geschlossenen oder doch wenigstens quadrierbaren Integralen führt. Dieser letzte Weg ist in der Tat von sehr vielen Ballistikern gegangen worden. Mit der zuerst erwähnten numerischen oder graphischen Integration hängt eng zusammen die Ausführung des Integrationsprozesses durch mechanische Apparaturen; diese Art der Lösung ist aber nur in wenigen Fällen versucht worden. Schließlich ist eine oft und mit Erfolg angewandte Methode durch Kombination der ersten drei Möglichkeiten geschaffen worden dadurch, daß die Flugbahn in eine bestimmte Anzahl von Einzelstücken, in sogenannte "Teilbögen", zerlegt wird; für jeden dieser Teilbögen wird die Integration gesondert und nach einem passenden Näherungsverfahren durchgeführt.

Wenn wir im folgenden eine Auswahl der bekanntgewordenen Integrationsverfahren herausgreifen und beschreiben, dann wollen wir uns stets darauf beschränken, nur solche anzuführen, die für den praktischen Ballistiker von Bedeutung geworden sind oder die Aussicht bieten, für die praktische Ballistik nutzbar gemacht zu werden. Welche der aufgeführten Methoden im einzelnen Falle in Frage kommt, kann hier höchstens angedeutet werden. Dafür gibt es im übrigen auch keine allgemeinen Regeln, sondern hier muß die Entscheidung dem praktischen Ballistiker überlassen bleiben, der die geeignete Methode nach mancherlei verschiedenen Gesichtspunkten auswählen wird: Art der Aufgabe, Umfang der zur Verfügung stehenden Zeit, Grad der geforderten Genauigkeit, Zuverlässigkeit und Umfang der zur Verfügung stehenden Hilfsmittel, Möglichkeit des Vergleichs der Rechenergebnisse mit Versuchsergebnissen und vieles andere mehr.

Die Darstellung der Integrationsverfahren wird entsprechend dem Vorangehenden in folgender Aufteilung durchgeführt:

1. Nach einer allgemeinen Integrationstheorie der Hodographengleichung unter den vereinfachenden Annahmen konstanter Temperatur und konstanten Luftgewichts folgt die Darstellung einiger der einfachsten integrablen Fälle.

2. Betrachtung der integrablen Fälle bei veränderlicher Luftdichte, aber konstanter Temperatur.

3. Integration durch angenäherte Differentialgleichungen der Bewegung. Die verschiedenen Verfahren werden als Sonderfälle einer allgemeinen Entwicklung herausgestellt.

4. Integration durch Reihenentwicklung, Teilbogenverfahren.

5. Numerische, graphische und mechanische Lösung der Differentialgleichungen.

§ 14. Die Integrabilität

der ballistischen Differentialgleichungen der Bewegung

a) Allgemeine Theorie aller Integrale der Hodographengleichung

Die einfachsten Fälle der Differentialgleichungen der äußeren Ballistik liegen unter der Annahme konstanter Luftdichte und konstanter Temperatur vor. Nach (47) erhält man die Hodographengleichung

$$\frac{d(v \cdot \cos \vartheta)}{d\vartheta} = \frac{c^*}{g} \cdot v \cdot f(v) \qquad (g = \text{const})$$

Wir führen hier zunächst neue Veränderliche durch die Beziehungen

$$\sin\vartheta=\tau; \quad v=e^{u}$$

ein und erhalten damit und mit der Abkürzung $\frac{c^*}{a} \cdot f(e^u) = \varrho(u)$

(101)
$$\frac{d\tau}{du} = \frac{1 - \tau^2}{\tau + \varrho(u)} = A(\tau, u) \quad \text{oder} \quad \boxed{d\tau - A \cdot du = 0}$$

Zweifellos gibt es eine große Anzahl von Funktionen $\rho(u)$, die diese Gleichung integrabel machen. Um das einzusehen, brauchen wir nur irgendeine Beziehung $\tau = \varphi(u)$ willkürlich anzunehmen, in (101) einzusetzen und daraus mit $\varphi(u)$ rückwärts $\rho = \rho(u)$ zu bestimmen. Sei etwa $\tau = 1 - k \cdot e^{-u}$, so folgt ohne weiteres $\rho(u) = 1$. Allgemein wird Athen, Ballistik

97

$$\varrho(u) = \frac{1-\varphi^2(u)}{\varphi'(u)} - \varphi(u).$$

In der Tat haben viele Ballistiker nach solchen Funktionen $\varrho(u)$, d. h. f(v) gesucht, die eine Integration der Gleichung (101) ermöglichen. Ein solches Beginnen ist aber nur dann sinnvoll, wenn die bestimmten Funktionen den wirklichen Widerstandsverhältnissen gerecht werden.

So gelang es Bernoulli⁽⁶⁶⁾, die Integration der Hodographengleichung auf Quadraturen zurückzuführen unter der Annahme $\varrho(u) = \frac{c_n}{g} \cdot v^n$. d'Alembert⁽⁶⁷⁾ fand die Lösung für $\varrho(u) = a \cdot v^n + b$ und $\varrho(u) = \bar{a} \cdot lnv + \bar{b}$. Weitere integrable Fälle haben Legendre⁽⁶⁸⁾, Siacci⁽⁶⁹⁾, Ouivet⁽⁷⁰⁾ u. a. angegeben. Eine allgemeine Behandlung und Lösung bekam diese Frage jedoch erst durch die Arbeiten von Drach⁽⁷¹⁾ und Den joy⁽¹³⁾. Wir wollen diese Entwicklungen in ihren Grundzügen kurz andeuten.

Die Integrale der Differentialgleichung (101) lassen sich auf die Lösung einer partiellen Differentialgleichung zurückführen. Denn nimmt man irgendeine Funktion $z(\tau, u)$ an, so gilt

$$dz = \frac{\partial z}{\partial \tau} \cdot d\tau + \frac{\partial z}{\partial u} \cdot du;$$

mit dz = 0 ist infolgedessen (101) der partiellen Differentialgleichung

(102)
$$A \cdot \frac{\partial z}{\partial \tau} + \frac{\partial z}{\partial u} = 0$$
 $(z = \text{const})$

äquivalent. Man erkennt weiter, daß jede Lösung $z(\tau, u)$ die Eulerschen Multiplikatoren $\frac{\partial z}{\partial \tau}$ und $\frac{\partial \ln z}{\partial \tau}$ für die Differentialgleichung (101) hat^(X). Denn mit $\frac{\partial \ln z}{\partial \tau}$ als Multiplikator geht (101) über in

$$\frac{\partial \ln z}{\partial \tau} \cdot d\tau - \frac{\partial \ln z}{\partial \tau} \cdot A \cdot du = 0 \quad \text{oder} \quad \frac{\partial z}{\partial \tau} \cdot d\tau - \frac{\partial z}{\partial \tau} \cdot A \cdot du = 0.$$

Wegen (102) erhält man unmittelbar

$$\frac{\partial z}{\partial \tau} \cdot d\tau + \frac{\partial z}{\partial u} \cdot du = dz = 0, \quad \text{wenn } z = \text{const.}$$

Infolgedessen ist jede Funktion $\tau = \varphi(u)$, die, in $z(\tau, u)$ eingesetzt, z zu einer Konstanten macht, eine Lösung der Hodographengleichung (101). Ist nun $M(\tau, u)$ irgendein Multiplikator^(X) der Gleichung (101), so muß die Bedingung

$$\frac{\partial M}{\partial u} = -\frac{\partial (M \cdot A)}{\partial \tau}, \quad \text{d. h.} \quad \frac{\partial M}{\partial u} + A \cdot \frac{\partial M}{\partial \tau} = -M \cdot \frac{\partial A}{\partial \tau}$$

erfüllt sein. Diese letzte Gleichung geht für jede Wurzel $\tau = \varphi(u)$ von M und $\frac{1}{M}$, die $\frac{\partial A}{\partial \tau}$ endlich läßt, also von $(-\varrho)$ verschieden ist, und somit $M[u, \varphi(u)] = 0$ oder ∞ macht, über in

$$\frac{\partial M}{\partial u} + A \cdot \frac{\partial M}{\partial \varphi} = 0 \quad \text{bzw.} \quad \frac{\partial \left(\frac{1}{M}\right)}{\partial u} + A \cdot \frac{\partial \left(\frac{1}{M}\right)}{\partial \varphi} = 0.$$

 $\varphi(u)$ ist somit wegen (102) eine Lösung der Hodographengleichung (101). Im weiteren Verlauf seiner Untersuchungen weist Drach nach, daß nur solche $z(u, \tau)$ die Lösung der Hodographengleichung durch Quadraturen gestatten, bei denen einer der Ausdrücke

(103)
$$z(u, \tau); \quad \frac{\partial z}{\partial \tau}; \quad \left(\frac{\partial z}{\partial \tau}\right)^n (n = \text{ganze Zahl}); \quad \frac{\partial}{\partial \tau} \left[ln \left(\frac{\partial z}{\partial \tau}\right)^n \right]$$

rational in τ ist. Das bedeutet aber, daß z. B. z die Form

$$z(u,\tau) = \sigma(u) \cdot \frac{[\tau - a_1(u)] \cdot [\tau - a_2(u)] \dots [\tau - a_n(u)]}{[\tau - b_1(u)] \cdot [\tau - b_2(u)] \dots [\tau - b_n(u)]}$$

haben muß. Man erkennt in der Tat, daß alle $a_v(u)$ und $b_v(u)$ Lösungen der Differentialgleichung (101) sind, da nach dem obigen a_v und b_v als Pole des Multiplikators $\frac{\partial \ln z}{\partial \tau}$ auftreten.

Man braucht also nur alle möglichen rationalen Formen der Invarianten (103) abzuzählen, um alle Formen von $\varrho(u)$ zu erhalten, die (101) quadrierbar machen. Umgekehrt ergibt nachher die Einführung der Werte von z für die entsprechenden Ausdrücke (103) in die Gleichung (102) die nötige Anzahl von Bestimmungsgleichungen, welche alle in den Invarianten (103) auftretenden Größen durch Quadraturen ergeben.

Man habe z. B. den einfachsten Fall

(104)
$$z = \sigma \cdot \frac{(\tau - a_1) \cdot (\tau - a_2) \cdots (\tau - a_i)}{(\tau - b_1) \cdot (\tau - b_2) \cdots (\tau - b_i)}$$
; $(a_1 = a_1(u) \text{ usw.})$

Nach Gleichung (102) erhält man, wenn man von ln z ausgeht,

$$\begin{aligned} (\tau+\varrho) \left| \frac{\sigma'}{\sigma} - \sum \frac{a_i'}{\tau-a_i} + \sum \frac{b_i'}{\tau-b_i} \right| \\ + (1-\tau^2) \cdot \left[\sum \frac{1}{\tau-a_i} - \sum \frac{1}{\tau-b_i} \right] = 0. \end{aligned}$$

Die a_i und b_i genügen der Gleichung (101), da sie sämtlich Pole des Multiplikators $\frac{\partial \ln z}{\partial \tau}$ sind. Somit geht die vorstehende Gleichung

 mit

$$a_i' = \frac{1-a_i}{a_i+\varrho}$$
 und $b_i' = \frac{1-b_i}{b_i+\varrho}$

über in

$$-\frac{\sigma'}{\sigma} \cdot (\tau + \varrho) = -\sum_{\substack{(\tau + \varrho) \cdot a_i' - (1 - \tau^2) \\ \overline{\tau - a_i}}} + \sum_{\substack{(\tau + \varrho) \cdot b_i' + (1 - \tau^2) \\ \overline{\tau - b_i}}} = -\sum_{\substack{(a_i + \varrho) \cdot a_i' - (1 - a_i^2) + (\tau^2 - a_i^2) + a_i' \cdot \tau - a_i' \cdot a_i}}{\overline{\tau - a_i}} + \sum_{\substack{(b_i + \varrho) \cdot b_i' - (1 - b_i^2) + (\tau^2 - b_i^2) - b_i' \cdot \tau - b_i' \cdot b_i \\ \overline{\tau - b_i}}} = -\sum_{\substack{(\tau + a_i) \cdot (\tau - a_i) + a_i' \cdot (\tau - a_i) \\ \overline{\tau - a_i}}} + \sum_{\substack{(\tau + b_i) \cdot (\tau - b_i) + b_i' \cdot (\tau - b_i) \\ \overline{\tau - b_i}}}$$

und schließlich

$$(\tau + \varrho) \cdot \frac{\sigma'}{\sigma} - \Sigma (a_i + a_i') + \Sigma (b_i + b_i') = 0.$$

Diese Gleichung muß identisch für alle τ und u gelten; folglich ist $\sigma' = 0$, d. h. $\sigma = \text{const}$ und

$$\Sigma(b_i + b_i') = \Sigma(a_i + a_i'), \text{ d. h. } \Sigma(a_i - b_i) = \Sigma(a_i' - b_i')$$

Durch Einführung der Ausdrücke für a_i' und b_i' gemäß (101) entsteht

$$\frac{\sum \frac{1+a_i\cdot\varrho}{a_i+\varrho}}{(1-\varrho^{\mathbf{s}})\cdot\left[\sum \frac{1}{a_i+\varrho}-\sum \frac{1}{b_i+\varrho}\right]} \quad \text{oder}^{\mathbf{s}}$$

$$(1-\varrho^{\mathbf{s}})\cdot\left[\sum \frac{1}{a_i+\varrho}-\sum \frac{1}{b_i+\varrho}\right]=0.$$

Die Annahme $\varrho^2 = 1$ werde ausgeschlossen. Folglich ist

$$\sum \frac{1}{a_i + \varrho} - \sum \frac{1}{b_i + \varrho} = 0$$

Demnach ist $(-\varrho)$ eine Nullstelle des Multiplikators $\frac{\partial \ln z}{\partial \tau}$, die $\frac{\partial A}{\partial \tau}$ unendlich macht, also auszuschließen ist. Die Wurzeln des Multiplikators $\frac{\partial \ln z}{\partial \tau}$ sind Lösungen von (101). Infolgedessen erhalten wir aus der Gleichung $(2i-2)^{\text{ten}}$ Grades

$$\sum \frac{1}{\tau - a_i} - \sum \frac{1}{\tau - b_i} = 0$$

im ganzen (2i-2) Wurzeln, die Lösungen von (101) sind und mit c_i bezeichnet werden mögen. Dazu kommen noch die trivialen Lösungen $\tau = +1$ und $\tau = -1$ von (101). Von den (2i-2)

* Für irgendeinen Index v ist:

$$\cdots \div \frac{1 + a_{\nu} \cdot \varrho}{a_{\nu} + \varrho} + \cdots = \cdots + \frac{1 + b_{\nu} \cdot \varrho}{b_{\nu} + \varrho} + \cdots,$$

d. h.
$$\cdots \div \frac{(1 + a_{\nu} \cdot \varrho) \cdot (b_{\nu} + \varrho)}{(a_{\nu} + \varrho) \cdot (b_{\nu} + \varrho)} \div \cdots = \cdots \div \frac{(1 + b_{\nu} \cdot \varrho) \cdot (a_{\nu} + \varrho)}{(a_{\nu} + \varrho) \cdot (b_{\nu} + \varrho)} \div \cdots$$

somit:
$$\cdots \div \frac{b_{\nu} \cdot (1 - \varrho^2)}{(a_{\nu} + \varrho) \cdot (b_{\nu} + \varrho)} \div \cdots = \cdots \div \frac{a_{\nu} \cdot (1 - \varrho^2)}{(a_{\nu} + \varrho) \cdot (b_{\nu} + \varrho)} \div \cdots;$$

also:
$$\cdots + \frac{(1-\varrho^2) \cdot (b_{\nu}-a_{\nu})}{(a_{\nu}+\varrho) \cdot (b_{\nu}+\varrho)} + \cdots = \cdots$$

oder:
$$\cdots + (1-\varrho^2) \cdot \left(\frac{1}{a_{\nu}+\varrho} - \frac{1}{b_{\nu}+\varrho}\right) + \cdots = \cdots$$

Durch Summation über alle ν folgt die obige Beziehung.

Wurzeln sollte die Wurzel ($-\rho$), da sie $\frac{\partial A}{\partial \tau}$ unendlich macht, ausgeschlossen werden. Schließlich findet man noch eine letzte Lösung aus

$$\begin{split} & \Sigma(a_i + a_i') = \Sigma(b_i + b_i'), \quad \text{d. h.} \quad \Sigma(a_i' - b_i') = -\Sigma(a_i - b_i) \\ & \text{oder} \qquad \qquad \Sigma(a_i - b_i) = \gamma \cdot e^{-u}. \end{split}$$

Somit bestehen die folgenden 2k Gleichungen zur Bestimmung der a_i und b_i , da die c_i als Lösung von (101) z zu einer Konstanten machen:

$$\frac{(c_{i} - a_{1}) \cdot (c_{i} - a_{2}) \dots (c_{i} - a_{k})}{(c_{i} - b_{1}) \cdot (c_{i} - b_{2}) \dots (c_{i} - b_{k})} = \gamma_{i}}{(1 - a_{1}) \cdot (1 - a_{2}) \dots (1 - a_{k})} = \gamma_{2 k - 2}}$$

$$\frac{(1 + a_{1}) \cdot (1 + a_{2}) \dots (1 + a_{k})}{(1 + b_{1}) \cdot (1 + b_{2}) \dots (1 + b_{k})} = \gamma_{2 k - 2}}$$

$$\sum (a_{k} - b_{k}) = \gamma_{2 k} \cdot e^{-u}$$

$$(i = 1, 2, \dots, 2k - 3)$$

$$(alle \gamma = const)$$

Mit diesen 2k Gleichungen erhält man die 2k Lösungen a_i und b_i als Funktionen von u. Darauf bestimmt sich ρ als Funktion von u aus der Gleichung

$$\sum \frac{1}{a_i+\varrho} - \sum \frac{1}{b_i+\varrho} = 0.$$

Man erkennt, daß $\rho(u)$ algebraisch in e^{-u} wird. Wir erinnern uns, daß $e^u = v$ gesetzt und $\rho(u) = \frac{c^*}{g} \cdot f(v)$ war. Infolgedessen kann z. B. f(v) als Summe von Potenzen von v, also in der Form

$$c^* \cdot f(v) = a_i \cdot v^i + a_k \cdot v^k + a_n \cdot v^n + \cdots$$

dargestellt werden. Diese Form umfaßt die einfachsten Fälle der ballistischen Widerstandsfunktion und soll daher zuerst einer näheren Untersuchung unterzogen werden.

Wir bemerken zum Vorstehenden noch folgendes: Nachdem man die a_i und b_i bestimmt hat, ist auch allgemein z und damit ein Multiplikator von (101) bekannt, womit letztere also auf Quadraturen zurückgeführt ist. — Die bisher gemachte Annahme, daß die Anzahl der Nullstellen und Pole von z, also der a_i und b_i , gleich ist und daß diese nur einfach sind, ist keine beschränkende für die vorstehenden Entwicklungen. Denn ist z in τ rational, so ist auch $\bar{z} = \frac{a \cdot z + \beta}{\gamma \cdot z + \delta}$ rational und eine Lösung. Durch geeignete Wahl der Konstanten a, β, γ, δ kann z immer auf die Form (104) gebracht werden.

b) Widerstandsgesetze in rationaler Form

Bei den vorangehenden Entwicklungen haben wir darauf hingewiesen, daß der Fall $z(u, \tau)$ als rationaler Ausdruck in τ der einfachste ist, der es bei $c \cdot \delta(y) = \text{const}$ und T(y) = const ermöglicht, die Integration der Hodographengleichung und damit der Gleichungen für x, y, t auf Quadraturen zurückzuführen. Wir wollen nunmehr diesen Fall noch näher untersuchen und dann durch Spezialisierung zu den praktisch wichtigen Formen übergehen.

Bei der gemachten Voraussetzung schreiben wir die Verzögerung durch den Luftwiderstand in der speziellen Form

(105)
$$c^* \cdot f(v) = g \cdot \sum_{-n}^{+n} a_m \cdot v^m$$

 $=g \cdot \left[a_{-n} \cdot v^{-n} + a_{-(n-1)} \cdot v^{-(n-1)} + \dots + a_0 + \dots + a_{n-1} \cdot v^{n-1} + a_n \cdot v^n\right]$

Dann lautet die Hodographengleichung

$$\frac{d(v\cdot\cos\vartheta)}{d\vartheta} = \frac{c^*}{g}\cdot v\cdot f(v) = \sum_{-n}^{+n} a_m \cdot v^{m+1}$$

oder

$$\frac{d\,v}{v}\cdot\frac{\cos\vartheta}{d\vartheta}-\sin\vartheta=\sum_{-n}^{+n}a_{m}\cdot v^{m}$$

Führen wir die neuen Veränderlichen $u = v^{-n}$, $dz = -n \cdot \frac{d\vartheta}{\cos \vartheta}$ ein, so geht diese Gleichung über in die folgende

(106)
$$\begin{cases} \frac{du}{dz} - u \cdot [h(z) + a_0] = a_{-n} \cdot u^2 + a_{-(n-1)} \cdot u^{\frac{2n-1}{n}} \\ + \dots + a_{-1} \cdot u^{\frac{n+1}{n}} + a_1 \cdot u^{\frac{n-1}{n}} + \dots + a_n; \\ h(z) = \sin \vartheta \end{cases}$$

Für diese veränderte Hodographengleichung lassen sich Sonderfälle angeben, die zu quadrierbaren Lösungen führen; wir wollen einige davon auswählen:

1. Sind von den Koeffizienten a_{ν} nur a_{-n} , a_0 und a_n von Null verschieden, so entsteht eine Riccatische Differentialgleichung

$$\frac{d\mathbf{u}}{dz} = a_{-n} \cdot u^2 + u[h(z) + a_0] + a_n,$$

die unter gewissen Bedingungen (gegenseitige Abhängigkeit zwischen a_{-n} , a_0 , a_n) integrabel wird (Legendre⁽⁶⁸⁾).

2. Verschwinden alle a_p außer a_0 und a_n , so entsteht die line are Differentialgleichung 1. Ordnung

(106 a)
$$\frac{du}{dz} = u \cdot [h(z) + a_0] + a_n,$$

deren Lösung sofort angegeben werden kann. Sie lautet^(X)

$$u(z) - u(z_0) = e^{\int [h(z) + a_0] dz} \cdot \left\{ a_n \cdot \int e^{-\int [h(z) + a_0] dz} \cdot dz + \text{const.} \right\}.$$

Diese Lösung ist bereits 1744 von d'Alembert⁽⁶⁷⁾ gefunden worden. Das Widerstandsgesetz hat hier die allgemeine Form

(105 a)
$$\frac{c^*}{g} \cdot f(v) = a_0 + a_n \cdot v^n$$

Da $\ln v = \lim_{n \to 0} \left(\frac{v^n - 1}{n} \right)$ ist, ergibt sich die von d'Alembert vorgeschlagene Form

$$a_0 + a_n \cdot \ln v$$

als Grenzfall der eben betrachteten. Sie führt gleichfalls zu integrierbaren Formen $(Vahlen^{(4)})$. 3. Das Integral der Differentialgleichung (106a) ist im allgemeinen für praktische Rechnungen unzweckmäßig, da es für praktische Anwendungen zu umständlich ist. Man läßt daher auch meist noch a_0 verschwinden, so daß die Verzögerung in der Form der bereits erwähnten Potenzgesetze

$$c^* \cdot f(v) = c_n \cdot v^n$$

erscheint. — In diesem Falle ist die Differentialgleichung für die Ietztgenannte Widerstandsform einfacher als (106a):

(106 b)
$$\begin{cases} \frac{d(v \cdot \cos \vartheta)}{d\vartheta} = \frac{c_n}{g} \cdot v \cdot v^n \\ \text{oder} \quad \frac{d(v \cdot \cos \vartheta)}{(v \cdot \cos \vartheta)^{n+1}} = \frac{c_n}{g} \cdot \frac{d\vartheta}{\cos^{n+1}\vartheta} \end{cases}$$

Also lautet die Lösung

(107)
$$\frac{1}{(v \cdot \cos \vartheta)^n} = \frac{1}{(v_0 \cdot \cos \varphi)^n} - \frac{n \cdot c_n}{g} \cdot \int_{\varphi}^{\varphi} \frac{d\vartheta}{\cos^{n+1}\vartheta} = \frac{1}{(v_0 \cdot \cos \varphi)^n} + \frac{n \cdot c_n}{g} \cdot [\xi_n(\varphi) - \xi_n(\vartheta)].$$

Die Integrale $\xi_{\nu}(\vartheta) = \int \frac{d\vartheta}{\cos^{\nu+1}\vartheta}$ sind auswertbar; für sie gilt die Rekursionsformel

(108)
$$\int \frac{d\vartheta}{\cos^m \vartheta} = \frac{\sin\vartheta}{(m-1)\cdot\cos^{m-1}\vartheta} + \frac{m-2}{m-1}\cdot \int \frac{d\vartheta}{\cos^{m-2}\vartheta} \,.$$

Mit Benutzung von (107) und den Formeln (45) finden wir also allgemein

	$v^{n} = \frac{\sec^{n}\vartheta}{\frac{n \cdot c_{n}}{g} \cdot [C - \xi_{n}\left(\vartheta\right)]};$
	$x = -\frac{1}{g} \cdot \int_{\sigma}^{\sigma} \frac{d(\operatorname{tg} \vartheta)}{\left \frac{n \cdot c_n}{q} \cdot [C - \xi_n(\vartheta)]\right ^{\frac{2}{n}}};$
(109)	$y = -\frac{1}{g} \cdot \int_{\varphi} \frac{\mathrm{tg}\vartheta \cdot d(\mathrm{tg}\vartheta)}{\left \frac{n \cdot c_n}{g} \cdot [C - \xi_n(\vartheta)]\right ^{\frac{2}{n}}};$
	$t = -\frac{1}{g} \cdot \int_{\varphi}^{\varphi} \frac{d(\operatorname{tg} \vartheta)}{\left \frac{n \cdot c_n}{g} \cdot [C - \xi_n(\vartheta)]\right ^{\frac{1}{n}}};$

wobei

$$C = \frac{g}{n \cdot c_n \cdot (v_0 \cdot \cos \varphi)^n} + \xi_n(\varphi)$$

Aus diesen Gleichungen erkennt man einige wichtige Eigenschaften der Integrale für Potenzgesetze: a) Die weiter oben abgeleiteten Ähnlichkeitssätze hätten auch, wie der Leser leicht nachweisen wird, aus dem Lösungssystem (109) abgeleitet werden können. — b) Läßt man ϑ gegen $\left(-\frac{\pi}{2}\right)$ gehen, erhält man die Elemente für $t = \infty$, d. h. im besonderen x_x , das nach den allgemeinen Betrachtungen in (§ 6 a) den Abstand der senkrechten Asymptote vom Nullpunkt als endlich angibt. Andererseits hat aber auch die rückwärtige Verlängerung des aufsteigenden Astes eine Asymptote. — Denn es gibt sicher einen endlichen Winkel β derart, daß $\xi_n(\beta) = C$, für den somit die Integranden in x, y, t, v unendlich werden. — c) Eine aus den Ähnlichkeitsgesetzen direkt folgende wichtige Eigenschaft ist noch aus (109) abzulesen: Die Größen $(n \cdot c_n)^{\frac{2}{n}} \cdot x; (n \cdot c_n)^{\frac{2}{n}} \cdot y$ und $(n \cdot c_n)^{\frac{1}{n}} \cdot t$ sind außer von φ nur von C, d. h. von β abhängig; für $\frac{c_n \cdot v_0^n}{\frac{g}{2}} = \text{const}$ ergeben

sich für dasselbe φ stets die gleichen $(n \cdot c_n)^n \cdot x$ usw. Das ist für tabellarisches Arbeiten besonders wichtig, wie wir gleich sehen werden.

c) Das quadratische und kubische Widerstandsgesetz. Vorschlag von de Jong

1. Machen wir in den Entwicklungen des vorigen Abschnittes n = 2, so wird

(110)
$$\xi_2(\vartheta) = \frac{1}{2} \left| \frac{\sin \vartheta}{\cos^2 \vartheta} + \ln \operatorname{tg} \left(\frac{\pi}{4} + \frac{\vartheta}{2} \right) \right|.$$

Da hier für die Länge s des Flugbahnbogens

$$2c_2 \cdot ds = 2c_2 \cdot \frac{dx}{\cos\vartheta}$$
$$= -\frac{d\vartheta}{\cos^3\vartheta} \cdot \frac{1}{C - \xi_2(\vartheta)} = \frac{-d\xi_2(\vartheta)}{-\xi_2(\vartheta) + C} = d\left[\ln\left\{C - \xi_2(\vartheta)\right\}\right]$$

wird, erhält man

(111)
$$e^{2c_1\cdot s} = \frac{C-\xi_2(\vartheta)}{C-\xi_2(\varphi)}.$$

Diese Eigenschaft ist von Bedeutung zur Auswertung der Integrale für x und y. Euler⁽⁷²⁾ schlug vor, die Integrale durch Summation* auszuwerten und dabei die Abszissen- bzw. Ordinatenzuwachse zu ersetzen durch

$$\Delta x = \cos\left(\vartheta + \frac{\Delta \vartheta}{2}\right) \cdot \Delta s = \cos\left(\vartheta + \frac{\Delta \vartheta}{2}\right) \cdot \frac{1}{2c_2} \cdot \ln\frac{C - \xi_2\left(\vartheta + \frac{\Delta \vartheta}{2}\right)}{C - \xi_2(\vartheta)};$$

entspr.
$$\Delta y = \sin\left(\vartheta + \frac{\Delta \vartheta}{2}\right) \cdot \Delta s.$$

* Danach wäre z. B. möglich:

$$\int_{x}^{x+n+h} f(x) \cdot dx = \sum f(x) \cdot \Delta x = f\left(x+\frac{h}{2}\right) \cdot h + f\left(x+\frac{3}{2}h\right) \cdot h + \cdots + f\left(x+\frac{2n-1}{2}h\right) \cdot h.$$

Die Abszissen und Ordinaten sind dann bestimmt als die Summen $x = \sum \Delta x$ bzw. $y = \sum \Delta y$. Das entsprechende läßt sich auch für t herleiten. Nach diesen Grundsätzen wurden Tabellen berechnet von J. C. F. Otto⁽³⁵⁾. Wegen der oben bereits angedeuteten Ähnlichkeitseigenschaften sind $2c_2 \cdot x$, $2c_2 \cdot y$, $\sqrt{2c_2} \cdot t$ für eine bestimmte Erhöhung φ nur noch von C, d. h. von $\frac{c_2 \cdot v_3^2}{g}$ abhängig; in den Tabellen wurde die folgende Anordnung gewählt, die wir den Ottoschen Tabellen im Auszug entnommen haben.

			$\varphi = 45^{\circ}$			
$2c_2 \cdot X$	$\frac{c_2 \cdot {v_0}^2}{g}$	$\frac{{v_0}^2}{2g\cdot X}$	ω	$rac{v_e}{v_0}$	$T \cdot \left \frac{\overline{g}}{\overline{X}} \right $	$\frac{y_s}{X}$
: 0,55 0,60 0,65 0,70	: 0,346 0,386 0,428 0,471	: 0,629 0,643 0,657 0,673	: 50° 46′ 51° 18′ 51° 50′ 52° 20′	: 0,810 0,794 0,779 0,764	: 1,486 1,492 1,498 1,505	: 0,276 0,279 0,282 0,285

Die in diesen Tabellen enthaltenen Quotienten $\frac{v_0^2}{2g \cdot X}$, $\frac{v_o}{v_0}$, $T \cdot \sqrt{\frac{g}{X}}$ und $\frac{y_t}{X}$ enthalten c_2 nicht mehr, da der Faktor c_2 bei der Bildung dieser Quotienten aus den Ausdrücken $2c_2 \cdot x$, $2c_2 \cdot y$, $\frac{c_3 \cdot v_0^2}{g}$ und $\sqrt{2c_2} \cdot t$ herausfällt.

Diese Tabellen sind noch heute im Gebrauch für Geschwindigkeiten bis 240 m/s, also vorzugsweise bei Minenwerfern. Die Erhöhungen sind bei diesen Tabellen von 5° zu 5° gestaffelt in dem Bereich (1° < φ < 75°). Der ballistische Beiwert c_2 ist definiert durch

(112)
$$c_{2} = \frac{R^{2} \cdot \pi \cdot g \cdot 0,014}{P \cdot 1,206} \cdot \delta \cdot i \begin{cases} 2R = \text{Kaliber in m;} \\ g = 9,81 \text{ m/s}^{2}; \\ P = \text{Geschoßgewicht in kg/m}^{3}; \\ \delta = \text{Luftgewicht in kg/m}^{3}; \\ i = \text{Formfaktor } (= 1 \text{ für Ogivalgeschosse von } 2 \text{ Kal. Abrdg.}). \end{cases}$$
Die Benutzung der Tabellen werde an folgenden Beispielen erläutert:

Beispiel 1. Für einen Minenwerfer seien folgende Daten bekannt: 2R = 8 cm; P = 7,288 kg; i = 1; $\delta = 1,206$; $v_0 = 200$ m/s, $\varphi = 45^{\circ}$. Gesucht werden X, T, ω , v_e , y_s . Es ist $c_2 = 0,00009467$, d. h. $\frac{c_2 \cdot v_0^2}{2}$ = 0,386 und $2c_2 \cdot X = 0,60$, also X = 3169 m. Ferner $\omega = 51^{\circ}18'$; $\frac{v_{\theta}}{v_{e}} = 0,794$, also $v_{\theta} = 158,8 \text{ m/s}; T \cdot \left| \frac{g}{X} = 1,492$, d. h. T = 26,81 s. Schließlich $\frac{y_s}{y} = 0,279$, also $y_s = 884$ m.

Beispiel 2: Bei einer Erhöhung von 45° wurde mit einem leichten Geschütz bei einer $v_0 = 220 \text{ m/s}$ die Schußweite X = 3755 m bestimmt. Gesucht c_2 , T, ω , v_e , y_g . Man findet $\frac{v_0^2}{2g \cdot X} = 0,657$ und damit $2c_2 \cdot X = 0.65$, d. h. $c_2 = 0.00008655$. Weiter bestimmt man: T = 29.30 s; $\omega = 51^{\circ}50'$; $v_e = 171.4$ m/s; $y_s = 1059$ m.

Die Otto-Tabellen führen leider die Gipfelabszisse x, nicht auf; daher ist die Bestim-C mung des Flugbahnverlaufes nicht möglich. Man kann aber zur gut angenäherten D Berechnung des Verlaufes der Flugbahn folgenden Weg einschlagen:

Wir ziehen die Schmidtsche Parabelnäherung aus (§6b) heran und bestim-

Abb. 16. Bestimmung der Gipfelweite

men daraus angenähert x_s durch die Beziehung (Abb. 16):

(113)
$$x_s = \frac{X}{2} + y_s \cdot \frac{\operatorname{ctg} \varphi - \operatorname{ctg} \omega}{2}$$

Denn: Im Dreieck OCE ist $\langle COE = \varphi, \langle OEC = \omega; OM = \frac{\Delta}{2}$, $OF = x_s, FS = y_s.$

Es werde bezeichnet $\triangleleft MSF = \triangleleft MCG = \beta$. Aus

$$\operatorname{tg} \beta = \frac{OG - OM}{CG} = \frac{2y_s \cdot \operatorname{ctg} \varphi - \frac{X}{2}}{2y_s}$$

 $X = OG + GE = 2 y_s \cdot (\operatorname{ctg} \varphi + \operatorname{ctg} \omega)$

und

folgt dann durch Elimination von $\frac{X}{2y_s}$:

$$\operatorname{tg} \beta = \frac{\operatorname{ctg} \varphi - \operatorname{ctg} \omega}{2}.$$

Schließlich ist $x_s = OM + MF = \frac{X}{2} + y_s \cdot tg(\omega - \varphi)$. — Somit ergibt sich folgende Flugbahnbestimmung mit Hilfe der Ottoschen⁽¹⁾⁽³⁵⁾ Tafeln: In der Mündungswaagerechten sind φ , v_0 , X, y_s und ω bekannt, nach (113) also auch x_s . Aus der Beziehung (109), I. Gleichung, findet man für beliebige Tangentenneigungen ϑ_1 der Flugbahn die Größe $\frac{c_2 \cdot v_1^2}{g}$. Wählt man ϑ_1 so, daß es die Bedingungen $0 < \vartheta_1 < \varphi$ und $\vartheta_1 = n \cdot 5^\circ$ (n = ganze Zahl) erfüllt, dann können ϑ_1 und v_1 als Ausgangswerte einer neuen Bahn betrachtet

Abb. 17. Näherungskonstruktion der Flugbahnkurve

werden; aus den Ottoschen Tabellen bestimmt man X_1 , ω_1 , y_{s_1} und nach (113) x_{s_1} . Die neue Bahn liegt also um $(y_s - y_{s_1})$ "höher" als die Ausgangsbahn. Durch Wiederholung für neue $\vartheta_v \neq \vartheta_1 \neq \varphi$ erhält

man so eine Reihe von Flugbahnpunkten, durch die die Flugbahnkurve gut angenähert wird (Abb. 17).

2. Im Falle n = 3 stellt sich die Verzögerung durch den Luftwiderstand in der Form

$$\Re = c_3 \cdot v^3$$

dar. Dann wird

(114)
$$\xi_3(\vartheta) = \operatorname{tg} \vartheta + \frac{1}{3} \operatorname{tg}^3 \vartheta.$$

Dieses Widerstandsgesetz, das von Bashforth⁽¹⁸⁾ zur Berechnung des gesamten Flugbahnverlaufs in geeigneter Form verwendet wurde, hat in England besondere Bedeutung erlangt; wir werden es kurz schildern.

Bestimmt man in (109) die Integrationskonstante aus den

Gipfelbedingungen ($\vartheta = 0$; $v \cdot \cos \vartheta = v_s$), so ergibt sich für das kubische Widerstandsgesetz das folgende System von Lösungen:

$$(115) \quad \begin{aligned} v \cdot \cos \vartheta &= v_s \cdot \frac{1}{\sqrt[\gamma]{1 - \mu \cdot \xi_3(\vartheta)}}; \ \mu &= 3 \cdot \frac{c_3 \cdot v_s^3}{g}; \\ v_s &= \frac{v_0 \cdot \cos \varphi}{\sqrt[\gamma]{1 + 3 \frac{c_3 \cdot (v_0 \cdot \cos \varphi)^3}{g} \cdot \xi_3(\varphi)}}; \\ x &= -\frac{v_s^2}{g} \cdot \int_{\varphi}^{\varphi} \frac{d(\operatorname{tg}\vartheta)}{\sqrt[\gamma]{1 - \mu \cdot \xi^3(\vartheta)}^2} = \frac{v_s^2}{g} \cdot [X_0^{\varphi} - X_0^{\varphi}]; \\ y &= -\frac{v_s^2}{g} \cdot \int_{\varphi}^{\varphi} \frac{\operatorname{tg}\vartheta \cdot d(\operatorname{tg}\vartheta)}{\sqrt[\gamma]{1 - \mu \cdot \xi_3(\vartheta)}^3} = \frac{v_s^4}{g} \cdot [Y_0^{\varphi} - Y_0^{\varphi}]; \\ t &= -\frac{v_s}{g} \cdot \int_{\varphi}^{\varphi} \frac{d(\operatorname{tg}\vartheta)}{\sqrt[\gamma]{1 - \mu \cdot \xi_3(\vartheta)}} = \frac{v_s}{g} \cdot [T_0^{\varphi} - T_0^{\varphi}]. \end{aligned}$$

Die Bedeutung der X_0^{ϑ} , Y_0^{ϑ} , T_0^{ϑ} ist ohne weiteres ersichtlich; diese Funktionen sind von Bashforth in Tabellenform mit dem doppelten Eingang (μ . ϑ) niedergelegt worden. Die Einrichtung der Tabellen wurde dadurch erleichtert, daß die Integrale für x, y, tauf elliptische Integrale führten, für die bereits die Legendreschen Tafeln vorlagen⁽⁷³⁾⁽⁷⁴⁾.

In diesem Gesetz ist der Beiwert c_3 definiert durch

$$c_3 = rac{R^2 \cdot \pi \cdot \delta \cdot i \cdot g}{P \cdot 1,206} \cdot \varkappa$$

Hierin ist \varkappa ein mit der Geschwindigkeit veränderlicher Zahlenfaktor, der folgende Werte hat:

$$\begin{array}{lll} 50 < v < 330 \text{ m/s} & \varkappa = 6 & \cdot 10^{-5} \\ 330 < v < 375 \text{ m/s} & \varkappa = 8,4 \cdot 10^{-5} \\ 375 < v < 419 \text{ m/s} & \varkappa = 9,4 \cdot 10^{-5} \\ 419 < v < 460 \text{ m/s} & \varkappa = 9 & \cdot 10^{-5} \text{ usw.} \end{array}$$

Der Gebrauch der Tafeln von Bashforth⁽¹⁸⁾ vollzieht sich folgendermaßen: Nach Berechnung von c_3 bestimmt sich v_s und damit μ . Dann findet man in den Tabellen $X_{i_0}^{\varphi}$ usw., aus denen sich x, y, t ergeben. Will man insbesondere die Schußweite bestimmen, so muß zunächst aus der Beziehung

$$Y_0^{\varphi} - Y_0^{-\vartheta} = 0$$

der Endneigungswinkel ($-\vartheta$) bestimmt werden. Für die Gipfelelemente speziell ist $\vartheta = 0$.

Schwieriger gestaltet sich die Bestimmung der Bahn, wenn nur v_0 , X und φ bekannt sind. Man muß dann zunächst c_3 schätzen und so durch Probieren den richtigen c_3 -Wert ermitteln. Ist auch die Flugzeit T gemessen, dann hat man einen guten Anhalt an der Beziehung $v_s = \frac{X}{T}$, die mit guter Annäherung aus dem luftleeren Raum übertragen werden kann.

[In der Musterbahn ist
$$\frac{X}{T} = \frac{8571}{42.32} = 202,5$$
 (richtig ist $v_s = 200$)].

Auf ein numerisches Beispiel zu diesem Verfahren verzichten wir, da die Tafeln von Basforth meist doch nicht zur Hand sein werden. Die ausführliche Darstellung dieses Verfahrens erfolgte auch hauptsächlich als Beispiel einer rationellen Tabellenform, die nicht nur Endelemente, sondern auch Zwischenpunkte der Bahn zu berechnen gestattet. Diese Forderung war bei den Ottoschen Tafeln nicht erfüllt.

3. In neuerer Zeit ist von J. de Jong⁽⁵⁶⁾ vorgeschlagen worden, auch das lineare Widerstandsgesetz zu benutzen, das wir schon in Abschnitt (§ 6b) in den Formeln (78) dargestellt haben. Da die Verzögerung durch den Luftwiderstand hier die Form

$$\Re = c_1 \cdot v$$

hat, ist in (78) ψ_{v} durch c_{1} zu ersetzen. Die Berechnung der Bahn denkt sich de Jong in kleinen Bogenstücken durchgeführt, bei denen sich c_{1} von Bogen zu Bogen ändert. Nach einer vorläufigen Rechnung mit den Anfangswerten, d. h.

$$c_1 = c \cdot \delta_0 \cdot v_0 \cdot K\left(v_0 \cdot \sqrt{\frac{T_0}{T_b}}\right),$$

wird ungefähr die Stelle bestimmt, an der v_0 um etwa $20~{\rm m/s}$ gesunken ist. Dann wird die Rechnung wiederholt mit einem neuen Wert

$$c_1 = c \cdot \delta(y_m) \cdot v_m \cdot K\left(v_m \cdot \sqrt{\frac{T_0}{T_m}}\right),$$

wo die mit dem Index m verschenen Größen die Mittelwerte aus Anfangs- und Endwert auf dem betreffenden Bogenstück bedeuten. Die Endwerte des ersten Bogens werden dann als Anfangswerte des zweiten betrachtet, für den die Rechnung in der entsprechenden Weise durchgeführt wird. Durch Summation über die einzelnen Intervalle kommt man so zum Gesamtverlauf der Flugbahn. Bei der Unterteilung der Bahn in die einzelnen Bogenstücke kann nach de Jong verhältnismäßig großzügig verfahren werden, wie es ja auch das im Anschluß an die Formeln (78) durchgerechnete Beispiel zeigte.

d) Integrable Fälle bei Berücksichtigung der Luftgewichtsabnahme

Die bisher betrachteten Fälle bezogen sich nur auf konstantes Luftgewicht und konstante Temperatur. Es ist nun bisher noch nicht gelungen, für den Fall veränderlicher Atmosphäre eine allgemeine, der bereits besprochenen Drachschen Integrationstheorie ähnliche zu entwickeln. Es zeigt sich, daß schon die Annahme

$$\Re = c \cdot \delta(y) \cdot f(v)$$

für die Verzögerung durch den Luftwiderstand auf erheblich größere mathematische Schwierigkeiten stößt. Es ist zwar versucht worden, dies Problem einer allgemeinen Behandlung zugänglich zu machen. Hier sind besonders zu nennen die Arbeiten von Stefano⁽⁷⁵⁾, der zwei gleich zu behandelnde Spezialfälle unter einheitlichen Gesichtspunkten betrachtet, und ein Vorschlag von Cavalli⁽⁷⁶⁾, auf den wir an anderer Stelle zurückkommen.

Stefano ist es gelungen, die folgenden beiden Formen für die Verzögerung durch den Luftwiderstand auf Quadraturen zurückzuführen:

1.
$$\Re = c \cdot \delta(y) \cdot f(v) = c_2 \cdot (1 + k \cdot y)^{-1} \cdot v^2;$$

2. $\Re = c \cdot \delta(y) \cdot f(v) = c_1 \cdot e^{-k \cdot y} \cdot v.$

Athen, Ballistik

Wir wollen für beide die allgemeinen Ableitungen durchführen.

1. Fall:
$$\Re = c_2 \cdot (1 + k \cdot y)^{-1} \cdot v^2$$
.

Die Differentialgleichungen der Bewegung lauten hier

$$\frac{d(v \cdot \cos \vartheta)}{d\vartheta} = \frac{c_2}{g} \cdot \frac{1}{1+k \cdot y} \cdot v^3; \quad \frac{dy}{d\vartheta} = -\frac{v^2}{g} \cdot \operatorname{tg} \vartheta \quad \text{usw.}$$

Es liegt also ein simultanes System in (v, y, ϑ) vor. Es ergibt sich

$$\frac{dv}{d\vartheta} \cdot \cos\vartheta - v \cdot \sin\vartheta = \frac{c_2}{g \cdot (1 + k \cdot y)} \cdot v^3;$$
$$y'' = \frac{d^2y}{d\vartheta^2} = 2 \frac{dy}{d\vartheta} \cdot \left[\frac{dv}{d\vartheta} \cdot \frac{1}{v} + \frac{1}{\sin 2\vartheta} \right],$$

also

(116)
$$y'' = 2y' \cdot \left[\operatorname{tg} \vartheta + \frac{1}{\sin 2\vartheta} + \frac{c_2}{g \cdot (1+k \cdot y)} \cdot \frac{v^2}{\cos \vartheta} \right];$$
$$\left(y' = \frac{dy}{d\vartheta} \right).$$

Die Substitution $\eta = \frac{1 + ky}{k \cdot y'}$ führt auf die folgenden Entwicklungen:

Aus $y' - \frac{y}{\eta} = \frac{1}{k \cdot \eta}$ ergibt sich $k \cdot y = e_{\varphi}^{\int} \frac{d\vartheta}{\eta} - 1$ oder $\frac{1}{1 + k \cdot y} = e_{\varphi}^{\int} \frac{d\vartheta}{\eta}$ also $k \cdot y' = \frac{1}{\eta} \cdot e_{\varphi}^{\int} \frac{d\vartheta}{\eta} = \frac{1}{\eta} [1 + k \cdot y];$ $k \cdot y'' = \frac{1}{\eta^2} \cdot e_{\varphi}^{\int} \frac{d\vartheta}{\eta} \cdot (1 - \eta') = \frac{1}{\eta^2} \cdot (1 + k \cdot y) \cdot (1 - \eta')$ Aus $y' = -\frac{y^2}{\eta} \cdot tg \vartheta$ folgt $\frac{y^2}{\cos\vartheta \cdot (1 + k \cdot y)} = -\frac{g}{k} \cdot \frac{1}{\eta \cdot \sin\vartheta}.$

114

Somit erhält man schließlich mit (116)

(117)
$$\frac{d\eta}{d\vartheta} = -2\eta \cdot \left[\operatorname{tg} \vartheta + \frac{1}{\sin 2\vartheta} \right] + \frac{2c_2 + k \cdot \sin \vartheta}{k \cdot \sin \vartheta}$$

Das ist eine lineare Differentialgleichung in η und ϑ , deren Integral sofort angegeben werden kann^(X); wir werden diese Differentialgleichung aber noch umformen, da in dieser Gleichung sin ϑ im Nenner vorkommt, was im Gipfel ($\vartheta = 0$) den Integranden ∞ macht. Vorher leiten wir die Beziehung für v ab. Aus

$$\frac{dv}{d\vartheta} = v \cdot \left[\operatorname{tg} \vartheta + \frac{c_2}{g} \cdot \frac{v^2}{(1+k \cdot y) \cdot \cos \vartheta} \right]$$

folgt unmittelbar

$$\frac{dv}{d\vartheta} = v \cdot \left[\operatorname{tg} \vartheta - \frac{c_2}{k \cdot \eta \cdot \sin \vartheta} \right]$$

Auch hier tritt $\sin\vartheta$ im Nenner auf. — Man erkennt leicht, daß das Produkt

$$\xi = \eta \cdot \sin \vartheta = -\frac{1+k \cdot y}{\frac{k \cdot v^2}{g} \cdot \operatorname{tg} \vartheta} \cdot \sin \vartheta = -\frac{(1+k \cdot y) \cdot \cos \vartheta \cdot g}{k \cdot v^2}$$

auch im Gipfel endlich bleibt. Führen wir daher $\xi = \eta \cdot \sin \vartheta$ als neue Veränderliche ein, so erhalten wir

(118)
$$\frac{d\xi}{d\vartheta} = -3\xi \cdot \operatorname{tg}\vartheta + \frac{2c_2 + k \cdot \sin\vartheta}{k}; \quad \frac{dv}{d\vartheta} = v \cdot \left[\operatorname{tg}\vartheta - \frac{c_2}{k \cdot \xi}\right]$$

Das sind lineare Differentialgleichungen^(X), deren Integrale bekannt sind. Hat man zunächst ξ gefunden, dann ergibt sich damit durch eine zweite Quadratur v als Funktion von ϑ :

(118a)
$$\begin{cases} \xi = e^{-3\int tg \cdot d\vartheta} \cdot \left\{ \int \frac{2c_2 + k \cdot \sin\vartheta}{k} \cdot e^{3\int tg \cdot d\vartheta} \cdot d\vartheta + \text{Int.-Konst.} \right\} \\ v = [\text{Int.-Konst.}] \cdot e^{\int \left(tg \cdot \vartheta - \frac{c_3}{k \cdot \xi}\right) \cdot d\vartheta} \end{cases}$$

8*

Die Auswertung dieser Integrale ist geschlossen möglich. Dagegen werden die nunmehr quadrierbaren Funktionen

$$\begin{aligned} x &= -\frac{1}{g} \cdot \int_{\varphi}^{\vartheta} v^2 \cdot d\,\vartheta; \quad y = -\frac{1}{g} \cdot \int_{\varphi}^{\vartheta} v^2 \cdot \operatorname{tg} \vartheta \cdot d\,\vartheta; \\ t &= -\frac{1}{g} \cdot \int_{\varphi}^{\vartheta} v \cdot \frac{d\,\vartheta}{\cos\vartheta} \end{aligned}$$

nur numerisch auswertbar. Es ist aber nicht ausgeschlossen, daß die beschriebene Methode einmal für Teilbögenberechnungen von Wert werden kann, wenn die auftretenden Integrale in Tabellenform niedergelegt werden.

2. Fall:
$$\Re = c_1 \cdot e^{-k \cdot y} \cdot v_1$$

Wir schreiben hier die Differentialgleichungen der Bewegung in der Form

$$\frac{d^2x}{dt^*} = \ddot{x} = -c_1 \cdot e^{-k \cdot y} \cdot \dot{x}; \quad \frac{d^2y}{dt^2} = \ddot{y} = -g - c_1 \cdot e^{-k \cdot y} \cdot \dot{y}$$

Hier läßt die zweite Gleichung sofort eine erste Integration zu, wenn wir schreiben

$$\frac{d}{dt}(\dot{y}) = -g + \frac{c_1}{k} \cdot \frac{d}{dt}(e^{-k \cdot y})$$

oder integriert

$$\dot{y} - v_0 \cdot \sin \varphi = -g \cdot t + \frac{c_1}{k} \cdot (e^{-k \cdot y} - 1).$$

Dies kann umgeformt werden in

$$\frac{d}{dt}(e^{k\cdot y}) = e^{k\cdot y} \cdot (k\cdot v_0 \cdot \sin \varphi - c_1 - k\cdot g \cdot t) + c_1.$$

Das ist eine lineare Differentialgleichung $^{(X)}$ für $e^{k\cdot \nu};$ ihre Lösung lautet

(119)
$$\begin{cases} e^{k \cdot y} = e^{\int (k \cdot v_0 \cdot \sin \varphi - c_1 - k \cdot g \cdot t) \cdot dt} \\ \cdot \left\{ c_1 \cdot e^{\int (c_1 + k \cdot g \cdot t - k \cdot v_0 \cdot \sin \varphi) \cdot dt} \cdot dt + \text{const} \right\} \end{cases}$$

Damit ist $e^{-k \cdot y}$ als Funktion von t bekannt und kann in die Differentialgleichung für x eingesetzt werden. Folglich bestimmt sich x durch eine zweimalige Quadratur. Die auftretenden Integrale sind geschlossen nicht auswertbar; vielmehr können sie nur numerisch berechnet werden. Das beeinträchtigt allerdings die Verwendbarkeit dieses Gesetzes; es ist aber auch hier durchaus möglich, daß eine tabellarische Darstellung der Integrale von Nutzen sein kann für Teilbögen berechnungen in der Art des Vorschlages von de Jong für das lineare Widerstandsgesetz ohne Berücksichtigung der kontinuierlichen Luftgewichtsabnahme; bei dem Verfahren von de Jong könnte auf diese Weise die Wiederholung der Rechnung erspart werden.

§ 15. Bestimmung der ballistischen Integrale aus einer angenäherten Hauptgleichung

a) Allgemeiner Fall

Wie wir schon des öfteren gesehen haben, reduziert sich die Lösung des außenballistischen Problems auf die Lösung der Hodographengleichung, vorausgesetzt, daß konstante Temperatur und konstantes Luftgewicht angenommen werden. Es ist daher nicht verwunderlich, daß das Hauptbestreben der Ballistiker darauf gerichtet war, diese Gleichung einer Lösung zugänglich zu machen. Die im vorhergehenden behandelten Fälle von Potenzgesetzen für den Luftwiderstand waren nur Sonderfälle dieses allgemeinen Problems, das in dieser Form für $v(\vartheta)$ geschlossen integrierbar war und für die übrigen Elemente auf Quadraturen führte. Das ist für ein Widerstandsgesetz in allgemeiner Form nicht mehr möglich. Die Ballistiker waren daher schon zufrieden mit einer angenäherten Lösung, die wenigstens auf Quadraturen führte. Da nun die Hodographengleichung auch in der bereits vereinfachten Gestalt (47) nicht allgemein auf Quadraturen führt, war es das Bestreben der mathematischen Ballistik, diese Gleichung durch Näherungsannahmen so zu verändern, daß sie auf Quadraturen zurückgeführt werden kann. Allgemein bekannt wurden die Methoden von Siacci, Didion, Charbonnier u. a. Wir wollen ihre Lösungen vom allgemeinen Standpunkt aus untersuchen und durch Spezialisierung darstellen.

Die Hodographengleichung kann mit der neuen Bezeichnung $w = v \cdot \cos \vartheta$ geschrieben werden, wenn noch zur Vereinfachung $c \cdot \delta$ durch c^* ersetzt wird:

(120)
$$\frac{d\vartheta}{dw} = \frac{g}{c^*} \cdot \frac{1}{v \cdot f(v)} = \frac{g}{c^*} \cdot \frac{1}{F\left(\frac{w}{\cos\vartheta}\right)},$$

wo
$$F\left(\frac{w}{\cos\vartheta}\right) = \frac{w}{\cos\vartheta} \cdot f\left(\frac{w}{\cos\vartheta}\right).$$

Wir führen hier die neuen, vorerst nicht näher definierten Veränderlichen und Bezeichnungen

$$\xi(\vartheta) = \int \psi(\vartheta) \cdot d\vartheta; \quad \cos \vartheta = \chi \left[\psi(\vartheta) \right]$$

ein; damit geht die Hodographengleichung über in

(120a)
$$\frac{d\xi}{dw} = \frac{g}{c^*} \frac{\psi}{F\left(\frac{w}{\chi}\right)}$$

Mit dieser Differentialgleichung nehmen wir folgende verallgemeinernde Veränderung vor: Aus rein formalen Gründen werden drei Konstanten a, b, λ^2 eingeführt; die Hodographengleichung werde dann so geschrieben:

(121)
$$\frac{d\xi}{dw} = \frac{g}{c^*} \cdot \frac{a + \lambda^2 \cdot (\psi - a)}{F\left[\frac{w}{b + \lambda^2(\chi - b)}\right]}.$$

Man erkennt zunächst, daß für $\lambda^2 = 1$ wieder die alte Hodographengleichung (120a) entsteht. Für a, b, λ^2 werden nun die einschränkenden Bestimmungen gefordert, daß erstens $\lambda^2 \leq 1$ bleibt und zweitens, daß a und b so gewählt werden, daß ($\psi - a$) und ($\chi - b$) durchweg ihrem Betrage nach möglichst klein werden; das ist z. B. schon erfüllt, wenn a und b Mittelwerte von ψ bzw. χ im betrachteten Gebiet sind. Bezüglich ψ und χ nehmen wir noch an, daß sie so gewählt seien, daß ($\psi - a$) und ($\chi - b$) als Potenzen von ξ darstellbar sind. Wenn also diese Bedingungen erfüllt sind, dann ist die rechte Seite von (121) eine holomorphe Funktion von w, ξ , λ^2 und nach dem Satz von Poincaré^(VIII) kann folglich die Lösung in der Form

$$\xi = \xi_0(w) + \lambda^2 \cdot \xi_1(w) + \cdots = \sum \lambda^{2n} \cdot \xi_n(w)$$

geschrieben werden. Setzt man in dieser Entwicklung $\lambda^2 = 1$, so entsteht die Lösung der Hodographengleichung als eine unendliche Summe von Funktionen. Die Konvergenzfrage solcher und ähnlicher Reihen ist eingehend von Popoff⁽¹⁷⁾ untersucht worden; wir wollen die Konvergenz der Entwicklung (122) als gegeben hinnehmen; näheres lese man bei Popoff⁽¹⁷⁾ nach. — Wir gehen jetzt zur Ermittlung der Funktionen $\varphi_n(w)$ über. Nach dem Satz von Poincaré dürfen wir den Ansatz machen

$$\xi = \xi_0 + \lambda^2 \cdot \xi_1 + \lambda^4 \cdot \xi_2 + \dots = \sum \lambda^{2n} \cdot \xi_n(w)$$

und infolgedessen

$$\psi = \psi_0 + \lambda^2 \cdot \psi_1 + \cdots = \sum \lambda^{2n} \cdot \psi_n(w)$$

und

$$\chi = \chi_0 + \lambda^2 \cdot \chi_1 + \cdots = \sum \lambda^{2n} \cdot \chi_n(w).$$

Dies in (121) eingeführt, ergibt

$$\frac{d\xi_0}{dw} + \lambda^2 \cdot \frac{d\xi_1}{dw} + \dots = \frac{g}{c^*} \cdot \frac{a + \lambda^2 \cdot [-a + \psi_0 + \lambda^2 \psi_1 + \dots]}{F\left[\frac{w}{b + \lambda^2 \cdot (-b + \chi_0 + \lambda^2 \cdot \chi_1 + \dots)}\right]}$$
$$= \frac{g}{c^*} \cdot \frac{a + \lambda^2 \cdot (\psi_0 - a) + \lambda^4 \cdot \psi_1 + \dots}{F\left[\frac{w}{b} \cdot \frac{1}{1 + \lambda^2 \cdot \left(\frac{\chi_0}{b} - 1\right) + \lambda^4 \cdot \frac{\chi_1}{b} + \dots\right]}}.$$

Den Bruch in $F\left[\frac{w}{b} \cdot \frac{w}{\cdots}\right]$ entwickeln wir:

$$\frac{1}{1+\lambda^2\cdot\left(\frac{\chi_0}{b}-1\right)+\lambda^4\cdot\frac{\chi_1}{b}+\cdots}\approx 1-\lambda^2\cdot\left(\frac{\chi_0}{b}-1\right)-\lambda^4\cdot\frac{\chi_1}{b}-\cdots$$

Weiter kann man auch $F\left(\frac{w}{b} \cdot \frac{w}{\cdots}\right)$ nach dem Taylorschen Satz^(VI) in eine Reihe entwickeln; man erhält

$$F\left[\frac{w}{b}\cdot\left\{1-\lambda^{2}\cdot\left(\frac{\chi_{0}}{b}-1\right)-\lambda^{4}\cdot\frac{\chi_{1}}{b}-\cdots\right\}\right]$$
$$=F\left(\frac{w}{b}\right)-\lambda^{2}\cdot\frac{w}{b}\cdot\left(\frac{\chi_{0}}{b}-1\right)\cdot F'\left(\frac{w}{b}\right)-\cdots,$$
$$F'\left(\frac{w}{b}\right)=\frac{d}{d\left(\frac{w}{b}\right)}\left[F\left(\frac{w}{b}\right)\right].$$

wo

Führt man schließlich noch die Abkürzung $\frac{w}{b} \cdot \frac{F'\left(\frac{w}{b}\right)}{F\left(\frac{w}{b}\right)} = N\left(\frac{w}{b}\right)$

ein, so folgt für die entwickelte verallgemeinerte Hodographengleichung

$$\frac{d\xi_0}{dw} + \lambda^2 \cdot \frac{d\xi_1}{dw} + \cdots$$
$$= \frac{g}{c^*} \cdot \frac{a + \lambda^2 \cdot (\psi_0 - a) + \lambda^4 \cdot \psi_1 + \cdots}{1 - \lambda^2 \cdot (\frac{\chi_0}{b} - 1) \cdot N(\frac{w}{b}) - \cdots} \cdot \frac{1}{F(\frac{w}{b})}.$$

Multipliziert man beide Seiten mit dem Nenner des die Potenzen von λ^2 enthaltenden Bruches der rechten Seite, so folgen für ξ_0, ξ_1, \ldots bei Trennung nach gleichen Potenzen von λ^2 die Differentialgleichungen

(122)
$$\begin{vmatrix} \frac{d\xi_0}{dw} = \frac{g}{c^{\bullet}} \cdot \frac{a}{F\left(\frac{w}{b}\right)}; \\ \frac{d\xi_1}{dw} = \frac{d\xi_0}{dw} \cdot \left| \frac{\psi_0}{a} - 1 + N\left(\frac{w}{b}\right) \cdot \left(\frac{\chi_0}{b} - 1\right) \right]; \\ \dots \text{ usw.} \\ \frac{d\xi_n}{dw} = H_n(w, a, b, \psi_0, \psi_1, \dots, \psi_{n-1}, \xi_0, \xi_1, \dots, \xi_{n-1}, \chi_0, \chi_1, \dots, \chi_{n-1}). \end{cases}$$

In diesem System findet man zunächst ξ_0 als Funktion von wdurch Quadratur; dann ergeben sich aus ξ_0 sofort ψ_0 und χ_0 , womit auch ξ_1 als Funktion von w durch Quadratur bestimmt ist. Man erkennt, daß allgemein ξ_n nur von w, a, b, ψ_0 bis ψ_{n-1} , χ_0 bis χ_{n-1} , ξ_0 bis ξ_{n-1} und den ersten *n*-Ableitungen von $F\left(\frac{w}{b}\right)$ abhängt, also ebenfalls durch Quadraturen bestimmbar ist. Nun ist

$$\frac{dx}{d\vartheta} = -\frac{v^2}{g} = -\frac{w^2}{g} \cdot \frac{1}{\cos^2\vartheta},$$

oder, da

$$\cos\vartheta = \chi$$
 (w), d. h. $d\vartheta = -\frac{\chi'(w)}{\sin\vartheta} \cdot dw = -\frac{\chi'(w)}{\sqrt{1-\chi^2(w)}} dw$

(123a)
$$dx = \frac{w^{\mathbf{a}}}{g} \cdot \frac{\chi'}{\chi^2 \cdot \sqrt{1-\chi^2}} \cdot dw.$$

Ahnlich findet man

(123b)
$$dy = \frac{w^2}{g} \cdot \frac{\chi'}{\chi^3} \cdot dw; \qquad dt = \frac{w}{g} \cdot \frac{\chi'}{\chi^2 \cdot \sqrt{1-\chi^2}} \cdot dw.$$

In den Gleichungen (123a und b) kann man nun $\chi(w)$ durch seine Entwicklung $\chi(w) = \chi_0(w) + \lambda^2 \cdot \chi_1(w) + \cdots$ und entsprechend x, y und t durch ihre Entwicklungen

$$\begin{aligned} x &= x_0 (w) + \lambda^2 \cdot x_1 (w) + \dots = \sum \lambda^{2n} \cdot x_n (w); \\ y &= y_0 (w) + \lambda^2 \cdot y_1 (w) + \dots = \sum \lambda^{2n} \cdot y_n (w); \\ t &= t_0 (w) + \lambda^2 \cdot t_1 (w) + \dots = \sum \lambda^{2n} \cdot t_n (w) \end{aligned}$$

ersetzen. Trennt man auch hier wieder durch Koeffizientenvergleich nach gleichen Potenzen von λ^2 , so folgt

(124)

$$\frac{d x_{0}}{d w} = \frac{w^{2}}{g} \cdot \frac{\chi_{0}'}{\chi_{0}^{2} \cdot \sqrt{1 - \chi_{0}^{2}}};$$

$$\frac{d x_{1}}{d w} = \left\{ \frac{\chi_{1}'}{\chi_{0}'} - 2 \frac{\chi_{1}}{\chi_{0}} + \frac{\chi_{0} \cdot \chi_{1}}{1 - \chi_{0}^{2}} \right\} \cdot \frac{d x_{0}}{d w};$$

$$\frac{d y_{0}}{d w} = \frac{w^{2}}{g} \cdot \frac{\chi_{0}'}{\chi_{0}^{3}};$$

$$\frac{d y_{1}}{d w} = \left\{ \frac{\chi_{1}'}{\chi_{0}'} - 3 \frac{\chi_{1}}{\chi_{0}} \right\} \cdot \frac{d y_{0}}{d w};$$

$$\frac{d t_{0}}{d w} = \frac{w}{g} \cdot \frac{\chi_{0}'}{\chi_{0}^{2} \cdot \sqrt{1 - \chi_{0}^{2}}};$$

$$\frac{d t_{1}}{d w} = \left\{ \frac{\chi_{1}'}{\chi_{0}'} - 2 \frac{\chi_{1}}{\chi_{0}} + \frac{\chi_{0} \cdot \chi_{1}}{1 - \chi_{0}^{2}} \right\} \cdot \frac{d t_{0}}{d w}.$$

Die x_0, x_1, \dots, x_n sind also nacheinander quadrierbar. Das gleiche gilt für die y_n und t_n . Das gesamte außenballistische Problem ist somit auf Quadraturen zurückgeführt. Die Entwicklungen führen zu unendlichen Potenzreihen in λ^2 , die für $\lambda^2 = 1$ die Lösung des Problems darstellen. Es ist natürlich an sich nicht nötig, auch x, y, t in die Entwicklungen

$$x = \sum \lambda^{2n} \cdot x_n, \quad y = \sum \lambda^{2n} \cdot y_n; \quad t = \sum \lambda^{2n} \cdot t_n$$

zu zerlegen, da ja die χ_0, χ_1, \cdots bereits bekannt sind und folglich $\chi = \sum \lambda^{2n} \cdot \chi_n$ direkt in (123a) und (123b) eingesetzt werden kann.— Es ist eine Frage der Konvergenz dieser Reihen und weiter auch eine Frage der Praxis, mit wieviel Gliedern der Entwicklung man auskommt. Damit die Operationen bei praktischen Berechnungen nicht zu umfangreich werden, müssen die ersten oder höchstens die ersten beiden Glieder dieser Reihen genügen. Die verschiedenen Verfahren, die im Nachstehenden besprochen werden, unterscheiden sich grundsätzlich nicht mehr voneinander; ihre Verschiedenheiten liegen vielmehr in der Wahl der Funktion $\xi(\vartheta)$ und der Konstanten a und b.

b) Die Lösung von Siacci

Die von Siacci⁽⁷⁷⁾ durchgeführte Lösung des außenballistischen Hauptproblems beschränkt sich auf die Verwendung des ersten Gliedes der im vorstehenden aufgeführten Reihenentwicklungen. Die Integration des Hodographen wird also mittels der Differentialgleichung

(125)
$$\frac{d\xi}{dw} = \frac{g}{c^*} \cdot \frac{a}{F\left(\frac{w}{b}\right)}$$

durchgeführt. Siacci trat erstmalig mit dieser Lösung 1880 vor die Öffentlichkeit; das zugrunde gelegte Widerstandsgesetz war das Zonenpotengesetz von Mayewski (s. S. 32/33); die Konstanten aund b wurden in dem verbesserten Lösungsverfahren Siacci II (1888) zweckmäßiger festgelegt, und im Näherungsverfahren Siacci III (1896) wurde statt der Zonenpotenzgesetze das einheitliche Luftwiderstandsgesetz von Siacci (s. S. 19 u. 31, sowie im Tabellenanhang) benutzt. Eine Verschärfung dieser letzten Methoden ist von Vallier⁽⁷⁸⁾ bezüglich der Bestimmung der Konstanten a und b vorgenommen worden.

Wir werden hier das Lösungsverfahren Siacci III darstellen, da es im Prinzip den ersten beiden Verfahren gleich ist und für die Praxis die größere Bedeutung gewonnen hat. — Siacci wählt in seinem Verfahren

$$\xi = \operatorname{tg} \vartheta, \quad \mathrm{d. \ h.} \quad \psi = \frac{1}{\cos^2 \vartheta} = 1 + \xi^2 \quad \mathrm{und} \quad \chi = \cos \vartheta = \frac{1}{\sqrt{1 + \xi^2}}$$

Weiter nimmt er für b den Wert $b = \cos \varphi$ und schreibt

$$\frac{w}{b}=\frac{v\cdot\cos\vartheta}{\cos\varphi}=u.$$

Damit geht die Hodographengleichung dann über in

wo

$$\frac{d(\operatorname{tg}\vartheta)}{du} = \frac{g}{c^*} \cdot \frac{a \cdot \cos\varphi}{u \cdot f(u)} = \frac{g}{c^*} \cdot \frac{1}{\beta \cdot \cos^2\varphi} \cdot \frac{1}{u \cdot f(u)},$$
$$\beta = \frac{1}{a \cdot \cos^3\varphi}.$$

 β spielt hier die Rolle eines Ausgleichfaktors, der die Vernachlässigung der Reihenglieder höherer Ordnung kompensieren soll. Ein Vergleich von (125) mit (120a) läßt in der Tat erkennen, daß a und b als Mittelwerte von $\psi = \frac{1}{\cos^2 \vartheta}$ bzw. $\chi = \cos \vartheta$ zu deuten sind. Man überzeugt sich andererseits leicht, daß die Hodographengleichung in der Form von Siacci dadurch entstanden zu denken ist, daß nacheinander folgende Näherungsannahmen gemacht werden

$$\cos\vartheta \cdot f(v) = \cos\vartheta \cdot f\left(\frac{v \cdot \cos\vartheta}{\cos\vartheta}\right) \approx \alpha \cdot \cos\vartheta \cdot f\left(\frac{v \cdot \cos\vartheta}{\cos\varphi}\right)$$
$$\sim \beta \cdot \cos^2\varphi \cdot f\left(\frac{v \cdot \cos\vartheta}{\cos\varphi}\right).$$

Hier wird die Ausgleichsrolle von β vielleicht noch deutlicher.

Für β wird nun eine Abschätzung gemacht, die einen Mittelwert β_m von β , das ja theoretisch für die gesamte Bahn nicht konstant sein kann, zu berechnen gestattet. Ist nämlich das Luftgewicht

eine Funktion der Höhe $[\delta(y)]$, so ist in der Hodographengleichung von Siacci gesetzt

 $c \cdot \delta(y) \cdot f(v) \cdot \cos \vartheta = c^* \cdot f(u) \cdot \beta \cdot \cos^2 \varphi = c \cdot \delta_0 \cdot f(u) \cdot \beta \cdot \cos^2 \varphi.$ Descriptions die Gleichung

Das gibt für β die Gleichung

$$eta = rac{\delta(y)}{\delta_0} \cdot rac{f(v) \cdot \cos artheta}{f(u) \cdot \cos^2 arphi} \,.$$

In dieser Formel wird zunächst $\delta(y)$ durch einen konstanten Mittelwert $\delta_m = \delta(y_m)$ ersetzt, wo y_m etwa $\frac{1}{2}$ bis $\frac{2}{3}$ der Gipfelhöhe der Flugbahn beträgt. β_m kann dann durch die Forderung bestimmt werden, daß etwa die "Fehlersumme"

$$\frac{\delta_{m}}{\delta_{0}} \cdot \int_{\varphi}^{-\omega} \left[\frac{f(v) \cdot \cos\vartheta}{f(u) \cdot \cos^{2}\varphi} - \beta \right] \cdot \varepsilon(\vartheta) \cdot d\vartheta = 0$$

wird. Hierin bedeutet $\varepsilon(\vartheta)$ eine geeignete "Gewichtsfunktion", die die Aufgabe hat, die Fehler der vom Anfangspunkt entfernteren Flugbahnpunkte stärker ins Gewicht fallen zu lassen. Das ist z. B. der Fall, wenn nach einem Vorschlag von Vahlen⁽⁴⁾

$$arepsilon(artheta) = rac{(\mathrm{tg}\,arphi - \mathrm{tg}\,artheta)^2}{\cos^2artheta}$$

gewählt wird. Ersetzt man schließlich noch v durch einen konstanten Mittelwert v_1 , so wird das Fehlerintegral quadrierbar. Was die Größe von v_1 anbetrifft, so wählt Siacci sie so, daß sich im luftleeren Raum mit der gleichen Erhöhung φ dieselbe Schußweite X wie im lufterfüllten Raum ergibt, d. h. so, daß

$$v_1 = \sqrt{\frac{g \cdot X}{\sin 2\varphi}}$$

wird. Die Ausführung des Fehlerintegrals übergehen wir. — Siacci wählte eine etwas andere Gewichtsfunktion, nämlich

$$\overline{\varepsilon}(\vartheta) = \left(\frac{\operatorname{tg} \varphi + \operatorname{tg} \vartheta}{\cos \vartheta}\right)^{\mathrm{s}},$$

bei welcher also die Punkte in der Umgebung $\vartheta = -\varphi$ am wenigsten ins Gewicht fallen. Es ergibt sich damit schließlich für β eine Tabelle mit dem doppelten Eingang φ und X; diese β -Werte müssen nach dem obigen dann noch mit dem Mittelwert $\frac{\delta_m}{\delta_0}$ des Luftgewichts multipliziert werden. Die β -Tafeln von Siacci werden im folgenden im Auszug wiedergegeben. Man erkennt, daß sich β nur wenig von 1 unterscheidet. Um den Eingangswert X der β -Tabellen zu bestimmen, kann also in 1. Annäherung $\beta = 1$ gewählt werden. Mit dem so berechneten X kann dann β genauer aus den Tabellen bestimmt werden.

Tafel der β -Werte von Siacci							
х ¢	1000	2000	3000	4000	5000		
10° 20° 30° 40°	1,00 1,03 1,06 1,13	$1,00 \\ 1,02 \\ 1,06 \\ 1,12$	0,98 1,01 1,06 1,12	0,98 1,01 1,06 1,11	0,99 0,98 1,05 1,11		

Wir gehen jetzt zur Bestimmung der Flugbahnelemente über. Das Integral der Hodographengleichung lautet

$$\operatorname{tg} \vartheta - \operatorname{tg} \varphi = \frac{g}{c^* \cdot \beta \cdot \cos^2 \varphi} \cdot \int_{u}^{u} \frac{du}{u \cdot f(u)}.$$

Ferner ist

$$(126) \begin{vmatrix} dx = -\frac{v^2}{g} \cdot d\vartheta = -\frac{\cos^2 \varphi}{g} \cdot u^2 \cdot d(\operatorname{tg} \vartheta) = -\frac{1}{c^* \cdot \beta} \cdot \frac{u \cdot du}{f(u)}; \\ dy = -\frac{v^2}{g} \cdot \operatorname{tg} \vartheta \cdot d\vartheta = \operatorname{tg} \vartheta \cdot dx \\ = \operatorname{tg} \varphi \cdot dx + \left| \frac{g}{c^* \cdot \beta \cdot \cos^2 \varphi} \cdot \int_{u_0}^{u} \frac{du}{u \cdot f(u)} \right| \cdot \left\{ -\frac{1}{c^* \cdot \beta} \cdot \frac{u \cdot du}{f(u)} \right\}; \\ dt = -\frac{v}{g} \cdot \frac{d\vartheta}{\cos \vartheta} = -\frac{u \cdot \cos \varphi}{g} \cdot d(\operatorname{tg} \vartheta) \\ = -\frac{1}{c^* \cdot \beta \cdot \cos \varphi} \cdot \frac{du}{f(u)}. \end{aligned}$$

x, y, t können nunmehr durch Quadratur bestimmt werden. Für

die tabellarisch festzulegenden Integrale führt Siacci die folgenden Abkürzungen ein:

(127)
$$\begin{cases} J(u) = -2g \cdot \int \frac{du}{u \cdot f(u)}; \quad D(u) = -\int \frac{u \cdot du}{f(u)}; \\ T(u) = -\int \frac{du}{f(u)}; \quad A(u) = -\int \frac{J(u) \cdot u \cdot du}{f(u)}. \end{cases}$$

Die untere Integrationsgrenze kann willkürlich festgelegt werden; Siacciz.B.wählt $u_0 = 1200$. Damit erhält man, da $u_0 = \frac{v_0 \cdot \cos \varphi}{\cos \varphi} = v_0$ ist, das folgende Lösungssystem

(128)
$$x = c' \cdot [D(u) - D(v_0)];$$
$$y = x \cdot \operatorname{tg} \varphi - \frac{c' \cdot x}{2 \cos^2 \varphi} \cdot \left\{ \frac{A(u) - A(v_0)}{D(u) - D(v_0)} - J(v_0) \right\};$$
$$t = \frac{c'}{\cos \varphi} \cdot [T(u) - T(v_0)];$$
$$\operatorname{tg} \vartheta = \operatorname{tg} \varphi - \frac{c'}{2 \cos^2 \varphi} \cdot [J(u) - J(v_0)].$$

In diesen Formeln ist $c' = \frac{1}{c^* \cdot \hat{\rho}}$ gesetzt worden; $c = \frac{c^*}{\hat{o}_0}$ hat dabei die auf S. 32 gegebene Definition.

Die Funktionen J(u), D(u), T(u), A(u) hat Siacci berechnet und in Tabellenform niedergelegt. Später hat Fasella⁽³⁹⁾ ballistische Tafeln mit doppeltem Eingang herausgebracht, in denen $\frac{z}{c'}$ und v_0 als Eingangswerte und folgende Bezeichnungen eingeführt sind:

$$\begin{split} D(u) - D(v_0) &= f_0; \quad \frac{A(u) - A(v_0)}{D(u) - D(v_0)} - J(v_0) = f; \\ &\frac{f}{f_0} = f_1; \qquad T(u) - T(v_0) = f_3; \\ J(u) - \frac{A(u) - A(v_0)}{D(u) - D(v_0)} = f_i \cdot f_2; \qquad J(u) - J(v_0) = f_4. \end{split}$$

Dann ist:

(129a)
$$\begin{vmatrix} \frac{x}{c'} = f_0; & y = x \cdot \operatorname{tg} \varphi - \frac{c' \cdot x}{2 \cos^2 \varphi} \cdot f = x \cdot \operatorname{tg} \varphi \cdot \left| 1 - \frac{f(x)}{f(\overline{X})} \right|; \\ t = \frac{c'}{\cos \varphi} \cdot f_3; & \operatorname{tg} \vartheta = \operatorname{tg} \varphi - \frac{c'}{2 \cos^2 \varphi} \cdot f_4. \end{vmatrix}$$

und speziell in der Mündungswaagerechten (y = 0):

(129 b)
$$\frac{X}{c'} = j_0; \quad \frac{\sin 2\varphi}{c'} = f; \quad \frac{\sin 2\varphi}{X} = f_1; \quad \frac{\operatorname{tg}\omega}{\operatorname{tg}\varphi} = j_2.$$

Mit Hilfe der Fasella-Tafeln lassen sich alle Flugbahnaufgaben schnell erledigen.

Funktionen von Siacci*								
D(u)	J(u)	A(u)	T(u)	u				
4500	0,18395	551,602	4,728	580,1				
5000	0,21878	651,784	5,669	487,6				
5500	0,26799	772,78	6,788	411,3				
6000	0,33606	922,92	8,104	353,1				
6500	$0,\!42552$	1112,42	9,613	313,1				
7000	0,53517	1351,81	11,285	287,3				
7500	0,66264	1650,53	13,087	268,1				
8000	0,80835	2017,49	15,015	251,3				
9000	1,16171	2995,12	19,256	221,5				

Beispiel 1. Gegeben c' = 0.8; $\varphi = 45^{\circ}$; $v_0 = 353.1$ m/s. Man findet für u = 268.1: $\vartheta = 36.45^{\circ}$; x = 1200 m; t = 5.64 s; y = 1057 m;

$$v = \frac{u \cdot \cos \varphi}{\cos \vartheta} = 235,7 \text{ m/s}.$$

Beispiel 2. (Fasella-Tafeln): Gegeben X = 4000 m; $v_0 = 250$ m/s; $\varphi = 45^{\circ}$. Man erhält: $f_1 = \frac{\sin 2\varphi}{X} = 0,00025$; daraus $\frac{X}{c'} = 5080$, also c' = 0,7874. Weiter $f_3 = 28,27$, d. h. T = 31,48 s; $f_2 = 1,507$, also $\omega = 56,43^{\circ}$.

^{*} Vgl. dazu auch die Zahlentafeln im Anhang.

Zwischenpunkte der Bahn können, wie in Beispiel 1 geschildert, bestimmt werden.

Es leuchtet ein, daß die Lösung von Siacci nur für Flugbahnen mit geringen Erhöhungen, d. h. für "Flachbahnen" ($\varphi < 45^{\circ}$) Verwendung finden kann. Bei steileren Bahnen ($\varphi > 45^{\circ}$) wird die Bestimmung von β als Mittelwert hauptsächlich der Bahnneigung ϑ zu ungenau. Daß das Verfahren von Siacci trotzdem eine so weite Verbreitung gefunden hat, liegt einmal an der bequemen Benutzung der tabulierten Funktionen J(u), D(u) usw. bzw. der Fasella-Tafeln, zum anderen aber auch an seiner guten Brauchbarkeit bei ausgesprochenen Flachbahnen mit sehr geringen Flughöhen, also heutzutage etwa zur Bestimmung der rasanten Flugbahnen für Panzerabwehrwaffen, deren Erhöhungen im allgemeinen über 5° nicht hinausgehen.

c) Die Mittelwertbestimmung von Vallier

In etwas anderer Weise als Siacci hat Vallier die Bestimmung des β -Wertes vorgenommen. Die grundsätzlichen Entwicklungen bezüglich des Hodographen unterscheiden sich nicht von den vorangehenden. Allerdings benutzt Vallier⁽⁷⁸⁾ nicht das einheitliche Luftwiderstandsgesetz von Siacci, sondern das in (§ 1c) angegebene Gesetz von Chapel-Vallier-Scheve-Hojel. Die Bestimmung von β führt er so durch:

Entwickelt man eine Funktion y = f(x) in eine Taylorreihe, so ergibt sich, wenn das Restglied in Integralform geschrieben wird,

$$y = f(0) + f'(0) \cdot x + \frac{1}{2}f''(0) \cdot x^2 + \frac{1}{2}\int_0^x (x - \xi)^2 \cdot f'''(\xi) \cdot d\xi,$$

wobei y und x wie immer die Bedeutung der Flugbahnordinate bzw. -abszisse haben. Mit Benutzung der zu Anfang des § 9 gegebenen Formeln erhält man also

(130)
$$y = x \cdot \operatorname{tg} \varphi - \frac{g \cdot x^2}{2 v_0^2 \cdot \cos^2 \varphi} - g \cdot \int_0^x (x - \xi)^2 \cdot \left(\frac{c \cdot \delta(y) \cdot f(v)}{v^4 \cdot \cos^2 \theta}\right)_{\xi} \cdot d\xi.$$

Für $\delta(y)$ wählt Vallier $\delta(y) = \delta_0 \cdot (1 - 0.00011 y)$. Wird unter dem Integral $c \cdot \delta(y) \cdot f(v)$ durch $c \cdot \delta_0 \cdot f(u) \cdot \beta \cdot \cos^2 \varphi$ ersetzt, so erhält man als Fehler in y

$$\varepsilon = g \cdot \int_{0}^{x} (x - \xi)^{2} \cdot \left(\frac{c \cdot \delta(y) \cdot f(v) - c_{1} \cdot \delta_{0} \cdot f(u)}{v^{4} \cdot \cos^{3} \vartheta} \right)_{\xi} \cdot d\xi,$$

wo $c_1 = c \cdot \beta \cdot \cos^2 \varphi$.

Für die Mündungswaagerechte speziell soll x = X und y = 0, d. h. $\varepsilon = 0$ sein. Vallier nimmt nun näherungsweise an, daß

$$\frac{c \cdot \delta(y) \cdot f(v) - c_1 \cdot \delta_0 \cdot f(u)}{v^4 \cdot \cos^3 \vartheta} = a_0 + a_1 \cdot \frac{x}{X}$$

ist, also linear mit x verläuft; dabei sind a_0 und a_1 Konstanten, die aus den Bedingungen x = 0 und $x = x_s$ ermittelt werden. a_0 ist also für x = 0 gegeben durch

$$a_0 = \frac{c \cdot \delta_0 \cdot f(v_0)}{v_0^4 \cdot \cos^3 \varphi} \cdot \left[1 - \beta \cdot \cos^3 \varphi\right],$$

während a, erst nach einer vorläufigen Rechnung, etwa mit $\beta = 1$, aus den Gipfelwerten bestimmt werden kann. Dabei macht übrigens Vallier die nicht unbedingt nötige Annahme, daß $\frac{x_s}{y} = 0.55$ als genügend genau bestimmt sei. Führt man also $a_0 + a_1 \cdot \frac{x}{x}$ in das Fehlerintegral ein, so folgt nach Ausführung der Integration

(131)
$$\varepsilon(X) = g \cdot X^3 \cdot \left| \frac{a_0}{3} + \frac{a_1}{12} \right|$$
, d. h. $4a_0 + a_1 = 0$,

da ja $\varepsilon = 0$ werden soll.

Da nun a_0 und a_1 durch

a₀ =
$$\frac{c \cdot \delta_0 \cdot f(v_0) - c_1 \cdot \delta_0 \cdot f(v_0)}{v_0^4 \cdot \cos^3 \varphi}$$

and $a_1 = \frac{X}{x_s} \cdot \left[\frac{c \cdot \delta(y_s) \cdot f(v_s) - c_1 \cdot \delta_0 \cdot f(u_s)}{v_s^4} - a_0 \right]$

u

bestimmt sind, erhält man aus (131) sofort eine Beziehung für β ; diese lautet ausführlich hingeschrieben

(132)
$$\beta \cdot \left| 6 \frac{f(v_0)}{v_0^4} + 5 \frac{f(u_s)}{u_s^4} \right| \cdot \frac{1}{\cos^3 \varphi} = 6 \frac{f(v_0)}{v_0^4} \cdot \frac{1}{\cos^3 \varphi} + 5 \frac{f(v_s)}{v_s^4} \cdot (1 - 0,00011 \ y_s).$$

Athen, Ballistik

Vahlen⁽⁴⁾ hat mit Recht darauf hingewiesen, daß dieses Verfahren nicht unbedingt zu konvergieren braucht, d. h. daß nach jeder neuen Bestimmung der Gipfelwerte zwecks Berechnung von a_0 und a_1 das Endergebnis nicht notwendig verbessert werden muß. Im übrigen hat auch eine genaue Bestimmung der Übrigen Flugbahnelemente zur Folge. Vielmehr müßte eigentlich β für jeden Bahnpunkt und daneben noch für jedes Bahnelement gesondert berechnet werden. Man erkennt das leicht, indem man die gleiche Entwicklung, die soeben für X durchgeführt wurde, etwa für die Flugzeit T anstellt. Cranz⁽¹⁾ hat übrigens dieses Verfahren numerisch an genau festgelegten "Normalbahnen" geprüft und teilweise erhebliche Abweichungen von den wahren Werten festgestellt*.

d) Die Lösungen Charbonniers

1. In dem System (122) setzen wir b = 1, $\frac{a}{c^*} = b'$ und zur Erreichung einheitlicher Bezeichnungen mit den Entwicklungen zum Verfahren von Siacci w = u. Dann ist mit $\xi = tg \vartheta$ wegen $N(u) = \frac{u}{u \cdot f(u)} \cdot \frac{d}{du} [u \cdot f(u)] = u \cdot \frac{f'(u)}{f(u)} + 1 = n(u) + 1$: $\frac{d(tg \vartheta_0)}{du} = g \cdot b' \cdot \frac{1}{u \cdot f(u)}$ $\frac{d(tg \vartheta_1)}{du} = \frac{d(tg \vartheta_0)}{du} \cdot \left| \frac{\psi_0}{a} - 1 + (n+1) \cdot (\cos \vartheta_0 - 1) \right|.$

 $\frac{\psi_0}{a}$ ist bei kleinen ϑ nicht wesentlich von $\frac{1}{\cos^2 \vartheta}$ verschieden, da a ein Mittelwert von $\psi_0 = \frac{1}{\cos^2 \vartheta_0}$ sein muß, wie der Vergleich von (120a) mit (125) zeigt. In den allgemeinen Entwicklungen war dargelegt worden, daß wir für das ballistische Problem $\lambda^2 = 1$ zu setzen haben. Beschränken wir uns mit Charbonnier also auf die ersten beiden Glieder der Reihenentwicklung, setzen wir also tg $\vartheta = \text{tg } \vartheta_0 + \text{tg } \vartheta_1$, so folgt

(133)
$$\frac{d(\operatorname{tg}\vartheta)}{du} \approx g \cdot \bar{c}' \cdot \frac{1}{u \cdot f(u)} \cdot \left| \frac{1}{\cos^2 \vartheta} + (n+1) \cdot (\cos \vartheta - 1) \right|.$$

130

^{*} Immerhin liefert dieses Verfahren gegenüber vielen anderen noch die genauesten Werte.

Charbonnier⁽¹⁰⁻¹³⁾ setzt nun voraus, daß n(u) vom Abgangspunkt bis zum Endpunkt durch einen konstanten Wert zu ersetzen sei, was natürlich allgemein nur für die Potenzgesetze gilt; außerdem wird $\cos \vartheta$ durch die ersten Glieder seiner Reihenentwicklung

$$\cos\vartheta = 1 - \frac{1}{2}\vartheta^2 + \cdots$$

ersetzt. Dann entsteht

(133a)
$$\frac{d(\operatorname{tg}\vartheta)}{du} = g \cdot \bar{c}' \cdot \frac{1}{u \cdot f(u)} \cdot \left[1 - \frac{n-1}{2} \cdot \vartheta^2\right].$$

Am Anfang der Bahn hat die eckige Klammer den Wert

$$\left[1-\frac{n-1}{2}\cdot\varphi^2\right]$$
,

im Gipfel den Wert 1; ein mittlerer Wert für den aufsteigenden Ast ist also $\left|1 - \frac{n(v_0) - 1}{4} \cdot \varphi^2\right|$; entsprechend ist der Mittelwert für den absteigenden Ast $\left|1 - \frac{n(v_0) - 1}{4} \cdot \omega^2\right|$. Nun war $\ddot{c}' = \frac{a}{c^*}$, wo $a \approx \frac{1}{\cos^2 \varphi}$ gesetzt werden kann. Ein Vergleich mit den Formeln von Siacci zeigt also, daß Charbonnier für den auf- und absteigenden Ast getrennte β -Werte benutzt, nämlich

$$\beta_1 = \frac{1}{1 - \frac{n_0 - 1}{4} \cdot \varphi^2} \approx 1 + \frac{n_0 - 1}{4} \cdot \varphi^2 \text{ für den aufsteigenden Ast;}$$

$$\beta_2 = \frac{1}{1 - \frac{n_0 - 1}{4} \cdot \omega^2} \approx 1 + \frac{n_0 - 1}{4} \cdot \omega^2 \text{ für den absteigenden Ast.}$$

Es wird dem Leser inzwischen aufgefallen sein, daß der wesentliche Punkt der besprochenen Näherungsmethoden die Bestimmung des β -Wertes ist. Weiter zeigt sich, daß je nach der Art der willkürlich getroffenen Näherungsannahmen Ausdrücke für β entstehen, die untereinander qualitativ und quantitativ außerordentlich verschieden sind. Glücklicherweise spielt der β -Wert insofern für die Praxis keine so große Rolle, als der praktische Ballistiker seine β -Werte meist rückwärts aus einigen Schieß-

131

9*

versuchsergebnissen bestimmt und für dazwischenliegende Erhöhungen interpoliert.

2. Eine weitere Verschärfung seines Verfahrens erhofft Charbonnier⁽¹⁰⁻¹³⁾ durch Verwendung der Formel (133) ohne die im Anschluß daran beschriebenen weitgehenden Vernachlässigungen. Den in (133) vorkommenden Ausdruck

$$\frac{1}{\cos^2\vartheta} + [n(u)+1] \cdot (\cos\vartheta - 1)$$

kann man auch schreiben

$$1 + \mathrm{tg}^2 \vartheta - [n(u) + 1] \cdot \frac{\sin^2 \vartheta}{1 + \cos \vartheta}.$$

Für kleine ϑ ist $\sin^2 \vartheta \approx tg^2 \vartheta$ und $\cos \vartheta \sim 1$; infolgedessen erhält man die angenäherte Hodographengleichung

$$\frac{d(\operatorname{tg}\vartheta)}{d\,u} = g \cdot \bar{c}' \cdot \frac{1}{u \cdot f(u)} \cdot \left[1 - \frac{n(u) - 1}{2} \cdot \operatorname{tg}^2 \vartheta\right].$$

Hierin kann man schließlich auf der rechten Seite für t
g ϑ noch näherungsweise t
g ϑ_0 einsetzen, d. h. es entsteht

(134)
$$\left| \begin{array}{c} \frac{d(\operatorname{tg}\vartheta)}{d\,u} = g \cdot \bar{c}' \cdot \frac{1}{u \cdot f(u)} \\ \cdot \left\{ 1 - \frac{n(u) - 1}{2} \cdot \left[\operatorname{tg}\varphi - \frac{\bar{c}'}{2} \left(J(u) - J(v_0) \right) \right]^2 \right\}. \end{array} \right.$$

Diese Gleichung ist quadrierbar. Bei der Quadratur erscheint zunächst die Funktion von Siacci

$$J(u) = -2g \cdot \int \frac{du}{u \cdot f(u)}.$$

Ferner treten noch die Funktionen

$$J_1(u) = \int Q(u) \cdot du; \quad J_2(u) = \int Q(u) \cdot J(u) \cdot du;$$
$$J_3(u) = \int Q(u) \cdot J^2(u) \cdot du, \quad \text{wo } Q(u) = \frac{n(u) - 1}{2} \cdot \frac{1}{u \cdot f(u)},$$

auf. Entsprechend ist leicht zu zeigen, daß für x, y und t außer den Funktionen von Siacci D(u), A(u) bzw. T(u) noch weitere

Funktionen $A_1(u)$, $A_2(u)$, $A_3(u)$, $D_1(u)$, $D_2(u)$, $D_3(u)$, $T_1(u)$, $T_{2}(u), T_{3}(u)$ auftreten, wo z. B.

$$\begin{split} T_1(u) &= \int u \cdot Q \ (u) \cdot d \ u; \quad T_2(u) = \int u \cdot J \ (u) \cdot Q \ (u) \cdot d \ u; \\ T_3(u) &= \int u \cdot J^2(u) \cdot Q \ (u) \cdot d \ u \end{split}$$

wird. - Erst wenn diese Funktionen berechnet vorliegen, wäre dieser Vorschlag von Charbonnier für die Praxis nutzbar zu machen, obgleich auch dann noch erheblich mehr Arbeit bei der Flugbahnberechnung zu leisten ist als etwa bei dem Verfahren von Siacci. Charbonnier soll entsprechende Tabellen aufgestellt haben. Auf weitere Einzelheiten zu diesem Verfahren gehen wir nicht ein.

e) Verschärfung der Konvergenz durch Popoff

Was Siacci, Vallier und Charbonnier durch geeignete Wahl der Mittelwerte a und b in (122) zu erreichen suchten, will Popoff⁽¹⁷⁾ durch andere Funktionen $\xi(\vartheta)$ herbeiführen, die bei den erstgenannten Ballistikern durchweg tg ϑ war. Popoff hat verschiedene Formeln in dieser Richtung entwickelt. Die vielleicht wichtigsten sind die folgenden.

1. Es sei
$$\xi = \operatorname{tg} \frac{\vartheta}{2}; \quad \frac{w}{b} = u; \quad \frac{g}{c^*} \cdot a \cdot b = \frac{g}{2\epsilon}; \quad b = 1.$$

Dann erhält man nach (122)

$$d\left(\operatorname{tg}\frac{\vartheta}{2}\right) = \frac{g}{2\varepsilon} \cdot \frac{1}{u \cdot f(u)}$$

oder

(135)
$$\operatorname{tg} \frac{\vartheta}{2} = \operatorname{tg} \frac{\varphi}{2} - \frac{1}{2\ell} \cdot [J(u) - J(u_0)]$$

Hier ist $J(u) = -g \cdot \int \frac{du}{u \cdot f(u)}$ und nur halb so groß wie bei Siacci.

Entsprechend erhält man nach (124), wenn die rechten Seiten der Differentialgleichungen nach Potenzen von λ^2 entwickelt werden:

133

$$x = \frac{1}{\dot{c}} \cdot [D(u) - D(u_0)] + \cdots$$

$$t = \frac{1}{\dot{c}} \cdot [T(u) - T(u_0)] + \cdots$$

$$y = \frac{2}{\dot{c}} \cdot \left| \operatorname{tg} \frac{\varphi}{2} + \frac{J(u_0)}{2\dot{c}} \right| \cdot [D(u) - D(u_0)] - \frac{1}{\dot{c}^3} \cdot [A(u) - A(u_0)] + \cdots$$

Diese Ausdrücke entsprechen in erster Näherung denen von Siacci. Man kann aber ihre Genauigkeit leicht noch folgendermaßen verschärfen. Da $\xi = \operatorname{tg} \frac{\vartheta}{2}$ ist, folgt

$$\frac{dx}{d\vartheta} = -\frac{u^2}{g} \cdot \frac{1}{\cos^2 \vartheta} \quad \text{oder} \quad \frac{dx}{d\xi} = -\frac{2u^2}{g} \cdot \frac{1+\xi^2}{(1-\xi^2)^2};$$

entsprechend

$$rac{dt}{d\xi} = -rac{2\,u}{g}\cdot rac{1+\xi^2}{(1-\xi^2)^2}\,; \quad rac{d\,y}{d\xi} = -rac{4\,u^2}{g}\cdot rac{1+\xi^2}{(1-\xi^2)^3}\cdot \xi\,.$$

Setzt man für $(1 + \xi^2)$ und $(1 - \xi^2)$ Mittelwerte ein, so erhält man nach Einführung von (135)

(136)
$$\begin{cases} x = \frac{1+m^2}{(1-m^2)^2} \cdot \frac{1}{\hat{c}} \cdot [D(u) - D(u_0)] \\ y = \frac{1+m^2}{(1-m^2)^3} \cdot \frac{1}{\hat{c}} \cdot \left\{ \frac{2}{\hat{c}} \cdot \left| \lg \frac{\varphi}{2} + \frac{J(u_0)}{2} \right| \cdot [D(u) - D(u_0)] \\ - \frac{1}{\hat{c}^2} \cdot [A(u) - A(u)] \right\} \\ t = \frac{1+m^2}{(1-m^2)^2} \cdot \frac{1}{\hat{c}} \cdot [T(u) - T(u_0)]. \end{cases}$$

Als Mittelwert *m* ist in erster Näherung $m = tg \frac{\varphi}{4}$ zu setzen, da ξ im Anfang der Bahn tg $\frac{\varphi}{2}$, im Gipfel 0 ist; das Mittel der Argumente ist $\frac{\varphi}{4}$. Im übrigen weist auch Popoff ausdrücklich darauf hin, daß die Wahl von *m* immer mit einer gewissen Willkür verknüpft ist. Den besten Anhalt dürften auch hier numerische Berechnungen geben. Jedenfalls lassen die Tangensformeln von Popoff auf einen größeren Konvergenzbereich hoffen.

2. Popoff schlägt noch weitere Funktionen vor; so

$$\xi = \operatorname{tg}\left(\frac{\vartheta}{n}\right),$$

wobei n eine ganze Zahl bedeutet. Durch Verwendung dieser Funktion soll eine weitere Steigerung der Konvergenz herbeigeführt werden.

Die Substitutionen

$$\xi = \sin\left(\frac{\vartheta}{n}\right)$$
 (n = 1 oder 2 oder 3 usw.)

führen zu den Popoffschen Sinusformeln. Es wird dem Leser nach den vorangehenden Entwicklungen nicht schwer fallen, diese Fälle allgemein herzuleiten.

Obgleich es noch eine ganze Reihe von Integrationsmethoden gibt, die in den Bereich der behandelten Fälle gehören, wollen wir diesen Punkt der Näherungslösungen abschließen mit einem Ausblick auf die Hauptgleichung von Cavalli, in der die Luftgewichtsabnahme mit der Höhe implizit enthalten ist.

f) Die Hauptgleichung von Cavalli für veränderliches Luftgewicht

Die in diesem Kapitel zu Anfang behandelten allgemeinen Entwicklungen lassen sich sinngemäß für veränderliches Luftgewicht verallgemeinern. Wir verzichten auf die allgemeine Ableitung dieser Zusammenhänge, da bisher noch keine Entwicklungen bekanntgeworden sind, die den Gleichungen von Cavalli⁽⁷⁶⁾ als Parallele zugeordnet werden könnten. Daher beschränken wir uns auf die Darstellung der neuen **Hauptgleichung von Cavalli**.

Die Abnahme der Luftdichte mit der Höhe folge dem Everlingschen Exponentialgesetz. Konstante mittlere Temperatur vorausgesetzt, muß also das folgende System von Differentialgleichungen simultan integriert werden:

(137)
$$\begin{cases} \frac{d\vartheta}{du} = \frac{g \cdot \cos\varphi}{c \cdot \delta_0} \cdot e^{k \cdot y} \cdot \frac{1}{v \cdot f(v)}, & \text{wo} \quad u = \frac{v \cdot \cos\vartheta}{\cos\varphi}; \\ \frac{dy}{du} = \frac{dy}{d\vartheta} \cdot \frac{d\vartheta}{du} = -\frac{\cos^2\varphi}{c \cdot \delta_0} \cdot e^{k \cdot y} \cdot \frac{u}{f(v)} \cdot \frac{\operatorname{tg}\vartheta}{\cos\vartheta}. \end{cases}$$

Wird die erste dieser Gleichungen noch einmal differenziert und

wird dem System (137) Rechnung getragen, so lassen sich y und seine Ableitungen eliminieren. Wir erhalten die Differentialgleichung 2. Ordnung

(138)
$$\begin{vmatrix} \frac{d^2\vartheta}{du^2} + \left(\frac{d\vartheta}{du}\right)^2 \cdot \varkappa \cdot u^2 \cdot \frac{\mathrm{tg}\vartheta}{\mathrm{cos}^2\vartheta} \\ + \frac{d\vartheta}{du} \cdot [n(v) + 1] \cdot \left|\frac{1}{u} + \mathrm{tg}\vartheta \cdot \frac{d\vartheta}{du}\right| = 0. \end{aligned}$$

Hierin bedeuten

$$\varkappa = \frac{k \cdot \cos^2 \varphi}{g}; \quad n(v) = \frac{v}{f(v)} \cdot \frac{d}{dv} [f(v)] = v \cdot \frac{f'(v)}{f(v)}; \quad u = \frac{v \cdot \cos \vartheta}{\cos \varphi}$$

Cavalli macht nun die (allerdings nur näherungsweise richtige) Annahme, daß n(v) stets durch n(u) ersetzt werden könne. Werden dann die neuen Variablen

$$\xi = \operatorname{tg} \vartheta; \quad J = -2g \cdot \int \frac{du}{u \cdot f(u)}$$

eingeführt, so geht (138) über in

(138a)
$$\frac{d^{\mathbf{a}}\xi}{dJ^{\mathbf{a}}} + [\varkappa \cdot u^{2} \cdot (1+\xi^{2}) + n(u) - 1] \cdot \frac{\xi}{1+\xi^{\mathbf{a}}} \cdot \left(\frac{d\xi}{dJ}\right)^{\mathbf{a}} = 0$$

Für die Potenzgesetze ist n(u) = const. Speziell für das lineare Widerstandsgesetz, also n = 1, wird diese Gleichung integrabel.

Wir müssen noch einmal darauf aufmerksam machen, daß (138a) nicht streng, sondern nur näherungsweise richtig ist. Besonders wenn v in der Nähe der Schallgeschwindigkeit liegt, kann n(v) erheblich von n(u) abweichen. Andererseits ist [n(u) - 1] nicht unbedingt klein gegenüber von $\varkappa \cdot u^2 \cdot (1 + \xi^2)$. Letzteres kann auch geschrieben werden $\frac{k}{q} \cdot v^2 \sim 0,00001 \cdot v^2$; für Geschwindigkeiten von etwa 300 m/s hat dies den Wert 0,9, während [n(u) - 1] dort den Wert 4 annehmen kann. Infolgedessen machen geringe Abweichungen im letzten Ausdruck schon große Bruchteile von 0,00001 $\cdot v^2$ aus. Anders ist es allerdings bei größeren Geschwindigkeiten, z. B. v = 800 m/s. Dort ist 0,00001 $\cdot v^2 = 6.4$, während [n(u) - 1] etwa bei 0,6 liegen dürfte. — Praktische Rechnungen und Ergebnisse für die neue Hauptgleichung von Cavalli liegen noch nicht vor.

§ 16. Reihenentwicklungen in der äußeren Ballistik

a) Potenzreihen nach der Zeit mit ihren Umkehrungen und Näherungen

Ist eine Funktion h(t) samt ihren ersten, als existierend vorausgesetzten (n + 1) Ableitungen im Intervall (0, t) stetig, so ist die Entwicklung in eine Mac-Laurinsche Reihe^(VI) möglich; diese lautet

$$h(t) = h(0) + \dot{h}(0) \cdot t + \frac{1}{2} \cdot \ddot{h}(0) \cdot t^{2} + \cdots + \frac{1}{n!} h^{(n)}(0) \cdot t^{n} + R_{n},$$

wobei das Restglied gegeben ist durch

$$R_n = \frac{t^{n+1}}{(n+1)!} \cdot h^{(n+1)} \left(\Theta \cdot t \right) = \frac{1}{n!} \cdot \int_0^t (t-\tau)^n \cdot h^{(n+1)}(\tau) \cdot d\tau$$

(0 < \Omega < 1)

Entsprechend lauten die Potenzreihen für die Elemente x, y einer Flugbahn

(139)
$$\begin{cases} x(t) = x(0) + \dot{x}(0) \cdot t + \frac{1}{2} \ddot{x}(0) \cdot t^2 + \cdots \\ y(t) = y(0) + \dot{y}(0) \cdot t + \frac{1}{2} \ddot{y}(0) \cdot t^2 + \cdots \end{cases}$$

Die in diesen Entwicklungen auftretenden Koeffizienten x(0), $\dot{x}(0)$, ... lassen sich mit Hilfe der Bewegungsgleichungen (43), (44), (45) leicht angeben; es ist:

Dabei haben wir uns der Einfachheit halber auf konstantes Luftgewicht und konstante Temperatur beschränkt. Sind letztere mit der Höhe veränderlich, so gehen in x(0), y(0) und den höheren Ableitungen noch die Ableitungen von $\delta(y)$ und T(y) ein.

Bezeichnet man

$$n = v_0 \cdot \frac{c \cdot f'(v_0)}{c \cdot f(v_0)};$$

$$n_1 = v_0^2 \cdot \frac{c \cdot f''(v_0)}{c \cdot f(v_0)}, \quad \dots, \quad n_{\nu} = \frac{c \cdot f^{(\nu+1)}(v_0)}{c \cdot f(v_0)} \cdot v_0^{\nu+1};$$

so erkennt man, daß in $x^{(\nu)}(0)$ und $y^{(\nu)}(0)$ stets nur v_0 , $c \cdot f(v_0)$ und diese Verbindungen vorkommen; nun kann die Verzögerung durch den Luftwiderstand immer in die Taylorreihe^(VI)

$$\frac{c \cdot f(v)}{c \cdot f(v_0)} = 1 + n \cdot \left(\frac{v}{v_0} - 1\right) + \frac{n_1}{2} \cdot \left(\frac{v}{v_0} - 1\right)^2 + \dots + \frac{n_{\nu}}{(\nu+1)!} \cdot \left(\frac{v}{v_0} - 1\right)^{\nu+1} + \dots$$

entwickelt werden. Ferner ist im allgemeinen $c \cdot f(v) = c \cdot f(\sqrt[4]{x^2 + y^2})$ nur durch eine numerische Tabelle gegeben, etwa für $v = 0, 1, 2, \ldots$ 1200 m/s. Infolgedessen ist $c \cdot f(v)$ durch ein Polynom vom Grade $N \leq 1200$ in $v^2 = \dot{x}^2 + \dot{y}^2$ genau darstellbar. Da die Differentialgleichungen der Bewegung als solche 1. Ordnung in \dot{x} und \dot{y} gelten können, wobei $c \cdot \frac{f(v)}{v}$ nach dem eben Gesagten in eine konvergente Potenzreihe in \dot{x} und \dot{y} entwickelt werden kann, sind \dot{x} und \dot{y} nach dem Existenzsatz von Cauchy durch Potenzreihen integrierbar in dem Gebiet (0 < v < 1200). Dort sind dann auch die Potenzreihen (139) konvergent (Vahlen⁽⁴⁾).

Aus den Potenzreihen (139) lassen sich durch Reihenumkehrung^(VII) neue Potenzreihen ableiten, die nach Potenzen beliebiger Elemente geordnet sind. Der Vorgang ist folgender: Die Potenzreihen (139) sind vom Typus

$$\eta = \xi + a_2 \cdot \xi^2 + a_3 \cdot \xi^3 + \dots + a_{\nu} \cdot \xi^{\nu} + \dots$$

Will man hier die Umkehrung

 $\xi = \eta + eta_2 \cdot \eta^2 + eta_3 \cdot \eta^3 + \dots + eta_
u \cdot \eta^
u + \dots$

haben, so muß $\xi = \eta + \Sigma \beta_{\nu} \cdot \eta^{\nu}$, $(\nu \ge 2)$, in $\eta = \xi + \Sigma \alpha_{\nu} \cdot \xi^{\nu}$, $(\nu \ge 2)$,

eingeführt werden; durch Koeffizientenvergleich gleicher Potenzen von η folgen dann sofort die Formeln:

(140)
$$\begin{cases} \beta_2 = -a_2; \ \beta_3 = 2a_2^2 - a_3; \\ \beta_4 = -5a_2^3 + 5a_2 \cdot a_3 - a_4; \cdots \text{ usw.} \end{cases}$$

Wendet man dieses Verfahren auf die erste der Potenzreihen (139) an, so ergibt sich

(141)
$$t = \frac{x}{v_0 \cdot \cos\varphi} \cdot \left[1 + \frac{c \cdot \delta_0 \cdot f(v_0)}{2 v_0^2 \cdot \cos\varphi} \cdot x + \frac{1}{3} \cdot \left\{ \left(\frac{c \cdot \delta_0 \cdot f(v_0)}{v_0} \right)^2 - \frac{1}{2} \cdot \left[\frac{c \cdot \delta_0 \cdot f(v_0)}{v_0} \right]' \cdot \left[c \cdot \delta_0 \cdot f(v_0) + g \cdot \sin\varphi \right] \right\} \cdot \left(\frac{x}{v_0 \cdot \cos\varphi} \right)^2 + \cdots \right]$$

Diese Reihe für t ergibt, in die zweite der Potenzreihen (139) eingeführt:

(142)
$$y = x \cdot \operatorname{tg} \varphi - \frac{g}{2} \cdot \left(\frac{x}{v_0 \cdot \cos \varphi}\right)^3 - \frac{g}{3} \cdot \frac{c \cdot \delta_0 \cdot f(v_0)}{v_0} \cdot \left(\frac{x}{v_0 \cdot \cos \varphi}\right)^3 - \frac{g}{12} \cdot \left[3\left(\frac{c \cdot \delta_0 \cdot f(v_0)}{v_0}\right)^2 - \left(\frac{c \cdot \delta_0 \cdot f(v_0)}{v_0}\right)' \cdot \left[c \cdot \delta_0 \cdot f(v_0) + g \cdot \sin \varphi\right]\right] \cdot \left(\frac{x}{v_0 \cdot \cos \varphi}\right)^4 + \cdots$$

Diese letzte Potenzreihe gestattet schließlich noch eine Umkehrung, aus der die horizontale Schußweite X bestimmt werden kann. Setzt man hierin nämlich y = 0 und dividiert durch $\frac{x}{\cos \varphi}$, dann entsteht eine Reihe für sin φ , aus der nach dem obigen Umkehrungsverfahren die Schußweite

(143)

$$X = \frac{v_0^2 \cdot \sin 2\varphi}{g} \cdot \left\{ 1 - \frac{4}{3} \cdot \frac{c \cdot \delta_0 \cdot f(v_0)}{g} \cdot \sin \varphi + \frac{8}{9} \cdot \frac{c \cdot \delta_0 \cdot f(v_0)}{g} \cdot \left[\frac{c \cdot \delta_0 \cdot f(v_0)}{g} + \frac{3}{4} \cdot \frac{v_0}{g} \cdot \left[c \cdot \delta_0 \cdot f(v_0) \right]' \right] \cdot \sin^2 \varphi + \cdots \right\}$$

bestimmt wird.

(- -

Die wichtige Potenzreihe (142) läßt eine ganze Reihe von Folgerungen zu, von denen die wichtigsten hier angeführt werden sollen:

1. Vernachlässigt man die Glieder mit x^3 und den höheren Potenzen von x, so ergeben sich die Formeln des luftleeren Raumes.

2. Bricht man die Reihe nach dem zweiten Gliede ab und ersetzt das Restglied durch $x^3 \cdot \text{const}$:

$$R_3 = \frac{x^3}{6} \cdot y^{\prime\prime\prime}(\theta \cdot x) = x^3 \cdot \text{const},$$

was allerdings nur näherungsweise zutrifft, so entstehen die Formeln von Piton-Bressant oder Helie, auch Formeln der "Commission de Gâvre" genannt. Dadurch kann die Flugbahngleichung in der Form

(144)
$$y = x \cdot \operatorname{tg} \varphi - \frac{g \cdot x^{4}}{2 v_{0}^{3} \cdot \cos^{2} \varphi} \cdot (1 + K \cdot x)$$
 (K = const)

geschrieben werden. Für die Mündungswaagerechte ist wegen y = 0 somit

(145)
$$1 + K \cdot X = \frac{v_0^2 \cdot \sin 2\varphi}{g \cdot X} = \frac{X_{\text{vac}}}{X} = Z.$$

 $Z=(1+K\cdot X)$ ist also das Verhältnis der Schußweite $X_{\rm vac}$ des luftleeren Raumes zu der des lufterfüllten Raumes (X). Man erhält weiter

(146)
$$\begin{aligned} \operatorname{tg} \vartheta &= \frac{d \, y}{d \, x} = \operatorname{tg} \varphi - \frac{g \cdot x}{2 \, v_0^3 \cdot \cos^2 \varphi} \cdot (2 + 3 \, K \cdot x); \\ v \cdot \cos \vartheta &= \sqrt{-\frac{g}{y''}} = \frac{1}{\sqrt{1 + 3 \, K \cdot x}} \cdot v_0 \cdot \cos \varphi; \\ t &= \int \sqrt{-\frac{y''}{g}} \cdot dx = \frac{2}{9 \, v_0 \cdot \cos \varphi} \cdot \frac{\sqrt{(1 + 3 \, K \cdot x)^3} - 1}{K} \end{aligned}$$

Speziell für die Mündungswaagerechte hat man die Formeln

(146a)
$$\begin{cases} X = \frac{Z-1}{K} = \frac{X_{\text{vac}}}{Z}; \quad \text{tg}\,\omega = \text{tg}\,\varphi \cdot f_1(Z); \qquad f_1(Z) = 2 - \frac{1}{Z} \\ v_e \cdot \cos\omega = v_0 \cdot \cos\varphi \cdot f_2(Z); \qquad f_2(Z) = (3Z-2)^{-\frac{1}{2}} \\ T = \frac{X}{v_0 \cdot \cos\varphi} \cdot f_3(Z); \quad f_3(Z) = \frac{2}{9} \cdot \frac{(3Z-2)^{\frac{3}{2}}-1}{Z-1}. \end{cases}$$

Die Funktionen $f_1(Z)$, $f_2(Z)$, $f_3(Z)$ können, wie es auch geschehen ist⁽¹⁾, leicht tabuliert werden.

Man erkennt durch Vergleich mit (142), daß $K = \frac{Z-1}{X}$ von der Erhöhung φ abhängig sein muß, also nicht konstant für alle Erhöhungen ist. Näherungsweise ist aber, wie man durch Vergleich von (144) mit (142) erkennt, K proportional $\frac{1}{\cos \varphi}$. Hat man also aus einem Schießversuch K gewonnen, so können für Überschlagsrechnungen die K-Werte für andere Erhöhungen aus der Beziehung $K(\varphi_1) : K(\varphi_2) = \cos \varphi_2 : \cos \varphi_1$ bestimmt werden.

Beispiel. In unserer Musterbahn (S. 75) ist $X = 8571 \text{ m}; \varphi = 737^{-}; v_0 = 381,6 \text{ m/s}.$ Somit $X_{\text{vac}} = 14730 \text{ m}$ und Z = 1,7185, d. h. K = 0,00008383. Also $f_1(Z) = 1,4180; f_2(Z) = 0,5631; f_3(Z) = 1,4243$ und damit $\omega = 51,4^\circ; T = 42,68 \text{ s}; v_e = 258,1 \text{ m/s}.$ Die Abweichungen von den wahren Werten sind $\Delta \omega = +1,2^\circ; \Delta T = +0,36 \text{ s};$ $\Delta v_e = +9,0 \text{ m/s}.$ Für die Erhöhung $\varphi_1 = 20^\circ$ erhält man $K_1 = 0,00006686 \text{ d. h.}$ aus $1 + K_1 \cdot X_1 = \frac{v_0^2 \cdot \sin 2\varphi_1}{g \cdot X_1}: X_1 = 6616 \text{ m}.$ Entsprechend lassen sich auch hierfür ω, v_e, T usw. bestimmen.

3. Man bricht die Potenzreihe (139) schon nach dem ersten Gliede ab und schreibt für den Rest $\left|-\frac{\bar{f}(x,\varphi)}{\cos^2\varphi}\right|$. Dann lautet die Flugbahngleichung

$$y = x \cdot \operatorname{tg} \varphi - \frac{\hat{f}(x, \varphi)}{\cos^2 \varphi}.$$

Handelt es sich nur um kleine Erhöhungsunterschiede, so kann $\dot{f}(x,\varphi)$ annähernd durch f(x) ersetzt, also als von φ unabhängig betrachtet werden. Es mögen jetzt zwei Bahnen vorliegen, von denen die eine bei der Erhöhung φ_x die Schußweite X = x, die andere bei der Erhöhung φ den Punkt (x, y), also die gleiche horizontale Entfernung x erreicht. Dann gelten die beiden Gleichungen

$$x \cdot \operatorname{tg} \varphi_x - \frac{f(x)}{\cos^2 \varphi_x} = 0$$
$$x \cdot \operatorname{tg} \varphi - \frac{f(x)}{\cos^2 \varphi} = y.$$

* Artilleristisches Winkelmaß: $360^{\circ} = 6400^{-}$; (1⁻ = 1 Strich).

Durch Elimination von f(x) erhält man daraus die allgemeine Flugbahngleichung

(147)
$$y = x \cdot \left(\operatorname{tg} \varphi - \frac{\cos^2 \varphi_x \cdot \operatorname{tg} \varphi_x}{\cos^2 \varphi} \right).$$

Ähnlich erhält man aus der Gleichung für den Fallwinkel ω_x bei der Schußweite X und der Gleichung für die Tangentenneigung ϑ in (x, y):

$$tg(-\omega_x) = tg \varphi_x - \frac{f'(x)}{\cos^2 \varphi_x};$$

$$tg \vartheta = tg \varphi - \frac{f'(x)}{\cos^2 \varphi},$$

d. h. durch Elimination von f'(x):

(147 a)
$$\operatorname{tg} \vartheta = \frac{y}{x} - \frac{\operatorname{tg} \omega_x \cdot \cos^2 \varphi_x}{\cos^2 \varphi} \, .$$

Wegen $y'' = -\frac{g}{(v \cdot \cos \vartheta)^2}$ erhält man schließlich durch Elimination von f''(x) aus den entsprechenden beiden Gleichungen:

(147 b)
$$v \cdot \cos \vartheta = v_{ex} \cdot \cos \omega_x \cdot \frac{\cos \varphi}{\cos \varphi_x}$$

Im luftleeren Raum gilt $t = \frac{x}{v \cdot \cos \vartheta}$; infolgedessen wird näherungsweise geschrieben: $t = \frac{x}{v \cdot \cos \vartheta} = \frac{x}{v_{ex} \cdot \cos \omega_x} \cdot \frac{\cos \varphi_x}{\cos \varphi}$ und somit:

(147 c)
$$t = t_x \cdot \frac{\cos \varphi_x}{\cos \varphi}$$

Die Formeln (147) bis (147 c) haben folgende wichtige Bedeutung: Für ein bestimmtes Geschütz mit einem bestimmten Geschoß ist oft nur die Schußtafel, also nur die Angabe der Flugbahnelemente für die Mündungswaagerechte vorhanden. Daraus können die Bahnelemente für irgendeinen Punkt außerhalb der Mündungswaagerechten mit den angegebenen Formeln berechnet werden. Das geschilderte Verfahren ist die sog. "Methode aus dem Aide-Mémoire" (franz. Zeitschrift der Artillerieoffiziere).

Beispiel. Musterbahn: X = 8571 m; $T_x = 42,32$ s; $\omega_x = 50,2^\circ$; $v_{ex} = 249,1$ m/s; $\varphi_x = 41,4^\circ$. Mit welcher Erhöhung wird ein Ziel in der-

selben Entfernung, aber einer Höhe von y = +50 m getroffen? Nach (147) ist

(147 d)
$$\operatorname{tg} \varphi = \frac{1}{\sin 2 \varphi_x} \cdot \left| 1 \frac{(+)}{x} \right| \cos^2 2 \varphi_x - 2 \frac{y}{x} \cdot \sin 2 \varphi_x \right|,$$

d. h. $\varphi = 43,3^{\circ}$. Man erhält weiter $\vartheta = -51,8^{\circ}$ [nach (147a)]; v = 250,2 m/s [nach (147b)] und t = 43,61 s [nach (147c)].

4. Die Potenzreihenentwicklung (142) führt schließlich noch auf eine Art der Flugbahndarstellung, die unter dem Namen Didion-Bernoullische Lösung für die Potenzgesetze bekannt ist. Letztere ergibt sich durch eine vereinfachende Abwandlung der nachfolgenden genaueren Ableitungen.

Aus der Potenzreihe (142) bilden wir für ein Widerstandsgesetz in Potenzform $c \cdot \delta_0 \cdot f(v) = c_n \cdot v^n$ den Ausdruck

$$(148)\left\{\begin{array}{l} \frac{x\cdot\operatorname{tg}\varphi-y}{g}\cdot v_{0}^{2}\cdot\cos^{2}\varphi=\frac{1}{2}x^{2}+\frac{c_{n}\cdot v_{0}^{n-1}}{3}\cdot\frac{x^{3}}{v_{0}\cdot\cos\varphi}\\ +c_{n}^{2}\cdot\frac{v_{0}^{2\,n-2}}{12}\cdot\left[3-(n-1)\cdot\left(1+\frac{g\cdot\sin\varphi}{c_{n}\cdot v_{0}^{n}}\right)\right]\cdot\frac{x^{4}}{v_{0}^{2}\cdot\cos^{2}\varphi}+\cdots\end{array}\right.$$

Wir verlangen nun, um die Berechnung zu vereinfachen, daß die rechte Seite dieser Potenzreihe möglichst genau mit dem Ausdruck

(149)
$$\frac{(1+a\cdot x)^{\nu}-\nu\cdot a\cdot x-1}{\nu\cdot(\nu-1)\cdot a^{2}}$$

in Übereinstimmung gebracht werde; dabei sind α und ν noch zu bestimmende Konstanten. Die Wahl der Form (149) ist zwar willkürlich; aber sie gewährleistet, daß bei zunächst noch ganz beliebigen α und ν die Potenzreihe (148) immer als Anfangsglied dasjenige des luftleeren Raumes, also $\frac{1}{2}x^2$, liefert. Entwickeln wir nun (149) und setzen die Koeffizienten gleicher Potenzen von x in (149) und (148) gleich, so folgen die beiden Gleichungen

$$\frac{v-2}{2} \cdot a = \frac{c_n \cdot v_0^{n-1}}{v_0 \cdot \cos \varphi};$$

$$\frac{(v-2) \cdot (v-3)}{2} \cdot a^2 = \frac{c_n^2 \cdot v_0^{2n-2}}{v_0^4 \cdot \cos^2 \varphi} \cdot \left\{3 - (n-1) - \frac{(n-1) \cdot g \cdot \sin \varphi}{c_n \cdot v_0^n}\right\}.$$

Setzt man zur Abkürzung

$$A = \frac{(n-1) \cdot g \cdot \sin \varphi}{c_n \cdot v_0^n}$$
 und $z = a \cdot x$,

so erhält man

(150)
$$\begin{cases} v = 2 \cdot \frac{A+n-1}{A+n-2}; \\ a = c_n \cdot (v_0 \cdot \cos \varphi)^{n-2} \cdot (A+n-2) \cdot \frac{1}{\cos^{n-1} \varphi} \end{cases}$$

und die Flugbahngleichung in der Gestalt

(151)
$$\begin{cases} y = x \cdot \operatorname{tg} \varphi - \frac{g \cdot x^{2}}{2 v_{0}^{2} \cdot \cos^{2} \varphi} \cdot 2 \frac{(1+z)^{\nu} - \nu \cdot z - 1}{\nu \cdot (\nu - 1) \cdot z^{2}} \\ = x \cdot \operatorname{tg} \varphi - \frac{g \cdot x^{2}}{2 v_{0}^{2} \cdot \cos^{2} \varphi} \cdot B(z). \end{cases}$$

Differenziert man dies nach x, so folgt

(151 a)
$$\begin{cases} \operatorname{tg} \vartheta = \operatorname{tg} \varphi - \frac{g \cdot x}{v_0^2 \cdot \cos^2 \varphi} \cdot \frac{(1+z)^{\nu-1} - 1}{(\nu-1) \cdot z} \\ = \operatorname{tg} \varphi - \frac{g \cdot x}{v_0^2 \cdot \cos^2 \varphi} \cdot J(z). \end{cases}$$

Eine weitere Differentiation nach x liefert wegen $v \cdot \cos \vartheta = \sqrt{-\frac{g}{y''}}$ sofort

(151 b)
$$v \cdot \cos \hat{v} = \frac{v_0 \cdot \cos \varphi}{\left(1+z\right)^2} = \frac{v_0 \cdot \cos \varphi}{V(z)}$$

Wegen $t = \int \frac{dx}{v \cdot \cos \hat{v}}$ erhält man schließlich

(151c)
$$t = \frac{x}{v_0 \cdot \cos \varphi} \cdot \frac{(1+z)^{\frac{\nu}{2}}-1}{\frac{\nu}{2} \cdot z} = \frac{x}{v_0 \cdot \cos \varphi} \cdot D(z).$$

Beispiel. Für das quadratische Widerstandsgesetz ist n = 2. Bei $\varphi = 45^{\circ}, c_2 = 0,0001, v_0 = 200 \text{ m/s}$ erhält man A = 1,7342; v = 3,1533; a = 0,0002453. In der Mündungswaagerechten ist y = 0, d. h.

(151 d)
$$B(z_{\theta}) = \frac{v_0^2 \cdot \sin 2\varphi}{g \cdot X} = \frac{X_{\text{vac}}}{X} \quad \text{oder} \quad a \cdot \frac{v_0^2 \cdot \sin 2\varphi}{g} = z_{\theta} \cdot B(z_{\theta}).$$

Hier ist also $z_e \cdot B(z_e) = 1,000204$, somit $z_e = 0,769$ und daher X = 3135 m. Ferner erhält man T = 26,66 s. Nach den Otto-Tabellen erhält man: X = 3129 m, T = 26,70 s.
Wir machen noch darauf aufmerksam, daß a für n = 2 von v_0 unabhängig wird. —

In der sog. Didion-Bernoullischen Lösung wird der in unseren Formeln auftretende Ausdruck A vernachlässigt. Dadurch erhält man $\nu = \frac{2n-2}{n-2}$; zum Ausgleich wird in a die Größe $\frac{1}{\cos^{n-1}\varphi}$ durch einen Ausgleichfaktor β^{n-2} ersetzt, so daß

$$a = c_n \cdot \left(\beta \cdot v_0 \cdot \cos \varphi\right)^{n-2} \cdot (n-2)$$

wird. Für n = 2 müssen für B(z) usw. Grenzbetrachtungen^(IV) angestellt werden; für z wird in diesem Falle $2c_2 \cdot \beta \cdot x$ gesetzt. Allgemein wird $\beta = \frac{\xi_2(\varphi)}{\operatorname{tg}\varphi}$ oder $\beta = \frac{\xi_2(\varphi) - \xi_2(\vartheta)}{\operatorname{tg}\varphi - \operatorname{tg}\vartheta}$ angenommen*. Der Leser überzeugt sich leicht, daß für n = 4 die Lösung von Piton-Bressant aus der Didion-Bernoullischen Lösung entsteht. Weiter erkennt man, daß unsere Formeln genauer sein müssen als die Didion-Bernoullischen, die ein Glied der Reihenentwicklung weniger genau wiedergeben als die unsrigen**.

Für n = 1 müssen unsere Formeln, da sie von der Form $\frac{0}{0}$ werden, in bekannter Weise durch Grenzbetrachtungen^(1V) abgewandelt werden. Man bildet z. B., da hier für $n = 1, \nu = 0$ wird:

$$y = x \cdot \operatorname{tg} \varphi - \frac{g \cdot x^{z}}{2 v_{0}^{2} \cdot \cos^{2} \varphi} \cdot \left\{ \frac{\frac{d}{dn} \left[(1+z)^{\nu} - \nu \cdot z - 1 \right]}{\frac{d}{dn} \left[\nu \cdot (\nu - 1) \cdot z \right]} \right\}_{n=1}$$

wobei v = v(n), z = z(n), A = A(n) zu berücksichtigen ist.

b) Parameterentwicklungen

In der Lösung der Differentialgleichungen der Bewegung (44) des außenballistischen Problems treten außer den Veränderlichen (x, y, t) verschiedene Parameter auf: neben dem ballistischen Beiwert c und den Anfangswerten v_0 und φ noch die Normal- und Bodenwerte des Luftgewichts und der Temperatur, also δ_0 und T_0

^{*} Hierbei hat $\xi_2(\varphi)$ die in Formel (110) gegebene Bedeutung.

^{**} Ähnliche Formeln können auch für die ballistische Kurve bei Berücksichtigung der Luftgewichtsabnahme mit der Höhe usw. abgeleitet werden.

bzw. δ_B und T_B auf. Die Lösung ist im allgemeinsten Fall von der Form

(152)
$$\psi = \psi (t, \dot{x}, \dot{y}, c, v_0, \varphi, \delta_0, T_0, \delta_B, T_B).$$

Da hierin δ_0 und δ_B vermittels der Gaskonstanten R mit T_0 und T_E verbunden sind, können in (152) δ_0 und δ_B auch durch R und p_0 und p_B ersetzt werden; daneben könnten ferner die Schwerebeschleunigung g und evtl. der Erdradius R_E als weitere Parameter aufgefaßt werden.

1. Wir werden zunächst den einfachsten Fall behandeln, daß das Luftgewicht und die Temperatur mit der Höhe konstant seien. Nun kommt es meist darauf an, für eine bestimmtes Geschoß, d. h. einen bestimmten Beiwert c und eine bestimmte Anfangsgeschwindigkeit v_0 die gesamte Flugbahnschar für alle Erhöhungen φ zu berechnen. In der Lösung (152) ist dann nur noch φ als veränderlicher Parameter zu betrachten, d. h. sie kann in der Form

(152a)
$$\psi = \psi(t, \dot{x}, y, \phi)$$

geschrieben werden. Es liegt nun die Frage nahe, ob es möglich ist, die Lösung nach Potenzen dieses veränderlichen Parameters zu entwickeln und durch Verwendung nur der ersten Glieder dieser Entwicklungen anzunähern. Wir werden gleich sehen, daß das in der Tat möglich ist, und daß es weiterhin möglich ist, die Parameterentwicklungen analog für beliebige andere Parameter durchzuführen. Die Parameterentwicklungen nach φ sind eingehend von

Abb. 18. Schiefwinklige Kcordinaten

Popoff⁽¹⁷⁾ untersucht worden.

Wir gehen aus von dem System (44). Hier führen wir ein neues Koordinatensystem (ξ , η) ein (Abb. 18), dessen ξ -Achse in die Abschußrichtung zeigt und dessen η -Achse unter dem Winkel α gegen die Horizontale x geneigt ist; α ist positiv, solange η unterhalb x liegt. Der Zusammenhang zwischen dem (ξ, η) -System und dem (x, y)-System wird durch folgende Transformation vermittelt, die aus Abb. 18 unmittelbar abgelesen werden kann:

(153)
$$x = \xi \cdot \cos \varphi + \eta \cdot \cos \alpha; \quad y = \xi \cdot \sin \varphi - \eta \cdot \sin \alpha.$$

Führt man dies in die Differentialgleichungen (44) ein, ersetzt man darin weiter formal $c \cdot \delta_0$ durch c^* und berücksichtigt die Konstanz der Lufttemperatur und des Luftgewichts, so erhält man die Differentialgleichungen

(154)
$$\begin{aligned} \ddot{\eta} &= g \cdot \frac{\cos \varphi}{\sin(a+\varphi)} - \dot{\eta} \cdot \frac{c^* \cdot f(v)}{v} \\ \ddot{\xi} &= -g \cdot \frac{\cos a}{\sin(a+\varphi)} - \dot{\xi} \cdot \frac{c^* \cdot f(v)}{v} \\ \ddot{\xi} &= 0; \ \dot{\xi} = \eta = 0 \\ \dot{\eta} &= 0; \ \dot{\xi} = v_0 \end{aligned}$$

Darin gilt für v:

(154a)
$$\begin{array}{c} v = \sqrt[]{\dot{\eta}^2 + \dot{\xi}^2 + 2\dot{\eta} \cdot \dot{\xi} \cdot \cos(\varphi + a)} \\ = \sqrt[]{(\dot{\eta} + \dot{\xi})^2 - 4\dot{\eta} \cdot \dot{\xi} \cdot \lambda}; \\ \text{d. h.} \\ v = (\dot{\eta} + \dot{\xi}) \sqrt{1 - \frac{4\dot{\eta} \cdot \dot{\xi}}{(\dot{\xi} + \dot{\eta})^2} \cdot \lambda}, \text{ wo } \lambda = \sin^2\left(\frac{\varphi + a}{2}\right) \end{array}$$

Hierin ist λ dauernd kleiner als 1, ebenso ist auf einem Teil der Flugbahn:

$$\frac{4\,\dot{\eta}\cdot\dot{\xi}}{(\dot{\eta}+\dot{\xi})^2} \leq 1\,.$$

Denn wegen (153) ist, wenn wie bisher ϑ der Winkel zwischen der Flugbahntangente und der Waagerechten ist,

$$\frac{\dot{\eta}}{\dot{\xi}} = \frac{\sin(\varphi - \vartheta)}{\sin(a + \vartheta)}, \quad \text{d. h.} \quad \frac{\dot{\eta}}{\dot{\xi} + \dot{\eta}} = \frac{\sin(\varphi - \vartheta)}{\sin(a + \vartheta) + \sin(\varphi - \vartheta)}$$
$$\frac{\dot{\xi}}{\dot{\xi} + \dot{\eta}} = \frac{\sin(a + \vartheta)}{\sin(a + \vartheta) + \sin(\varphi - \vartheta)}$$

und

10¹⁰

und somit

(155)
$$\varepsilon = \frac{4 \, \dot{\eta} \cdot \dot{\xi}}{(\dot{\xi} + \dot{\eta})^2} = 4 \, \frac{\sin(a + \vartheta) \cdot \sin(\varphi - \vartheta)}{[\sin(a + \vartheta) + \sin(\varphi - \vartheta)]^2} \, .$$

Am Anfang der Bewegung ist $\varphi = \vartheta$, d. h. $\varepsilon = 0$; für $\vartheta = \frac{\varphi - a}{2}$ wird $\varepsilon = 1$ und für $\vartheta = -a$ ist wieder $\varepsilon = 0$. Für $t = \infty$ wird dieser Ausdruck, da $\vartheta = -\frac{\pi}{2}$ wird:

$$|\varepsilon| = \frac{4 \cdot \frac{\cos \varphi}{\cos a}}{\left|1 - \frac{\cos \varphi}{\cos a}\right|^2}$$

Hier wird $|\varepsilon|$ nur für sehr große α kleiner als 1. — Jedenfalls erkennt man zunächst, daß v nach Potenzen von λ entwickelt werden kann, und zwar sicher in dem Gebiet $|\varepsilon| \leq 1$. Dasselbe gilt dann auch für die rechten Seiten der Bewegungsgleichungen (154), womit die Möglichkeit der Entwicklung der Lösung nach Potenzen von λ nachgewiesen ist^(VIII); dabei muß allerdings vorausgesetzt werden, daß $\frac{f(v)}{v}$ eine auf der ganzen Flugbahn holomorphe Funktion von v ist.

Somit dürfen wir nach dem Satz von Poincaré^(VIII) die Lösungen $\xi(\lambda, t)$ und $\eta(\lambda, t)$ von (154) als Potenzreihen in λ ansetzen:

(156)
$$\begin{cases} \xi(\lambda,t) = \xi_0 + \lambda \cdot \xi_1 + \lambda^2 \cdot \xi_2 + \dots = \sum \lambda^n \cdot \xi_n; \ \dot{\xi} = \sum \lambda^n \cdot \dot{\xi}_n; \\ \eta(\lambda,t) = \eta_0 + \lambda \cdot \eta_1 + \lambda^2 \cdot \eta_2 + \dots = \sum \lambda^n \cdot \eta_n; \ \dot{\eta} = \sum \lambda^n \cdot \dot{\eta}_n. \end{cases}$$

Wir führen nun noch folgende Abkürzungen ein:

(157)
$$\begin{cases} \frac{c^{\bullet} \cdot f(v)}{v} = c^{*} \cdot G(v); \ \xi(\lambda, t) + \eta(\lambda, t) = w(\lambda, t); \ \xi_{n} + \eta_{n} = w_{n}, \\ \text{d. h. } w = \sum \lambda^{n} \cdot w_{n}. \end{cases}$$

Damit erhalten wir nach dem Satz von Taylor für $c^* \cdot G(v)$ die Reihenentwicklung

148

(158)
$$\begin{vmatrix} c^* \cdot G(v) = c^* \cdot G \left[\dot{w} \cdot \sqrt{1 - \frac{4 \, \dot{\eta} \cdot \dot{\xi} \cdot \lambda}{(\dot{\xi} + \dot{\eta})^2}} \right] \\ = c^* \cdot G \left[\dot{w} \cdot \left(1 - \frac{2 \, \dot{\xi} \cdot \dot{\eta}}{\dot{w}^2} \cdot \lambda - \cdots \right) \right] \\ = c^* \cdot G(\dot{w}) - \frac{2 \, \dot{\eta} \cdot \dot{\xi}}{\dot{w}} \cdot c^* \cdot G'(\dot{w}) \cdot \lambda - \cdots \\ \text{wobei} \qquad c^* \cdot G'(\dot{w}) = \frac{d}{d\dot{w}} \left[c^* \cdot G(\dot{w}) \right]. \end{aligned}$$

Ersetzt man nun $\frac{c^* \cdot f(v)}{v} = c^* \cdot G(v)$ in (154) durch seine Entwicklung (158) und führt in diese Gleichungen den Ansatz (156) für ξ und η ein, so ergibt sich nach Vergleich der Koeffizienten gleicher Potenzen von λ :

159)

$$\begin{aligned}
\frac{d}{dt} \frac{\dot{\eta}_{0}}{dt} &= g \cdot \frac{\cos \varphi}{\sin (\varphi + a)} - \dot{\eta}_{0} \cdot c^{*} \cdot G(\dot{w}_{0}); \\
\frac{d}{\delta t} &= -g \cdot \frac{\cos a}{\sin (\varphi + a)} - \dot{\xi}_{0} \cdot c^{*} \cdot G(\dot{w}_{0}) \\
\frac{d}{dt} &= -\dot{\eta}_{1} \cdot c^{*} \cdot G(\dot{w}_{0}) - \dot{\eta}_{0} \cdot c^{*} \cdot G'(\dot{w}_{0}) \cdot \dot{w}_{1} \\
&+ \dot{\eta}_{0} \cdot c^{*} \cdot G'(\dot{w}_{0}) \cdot \frac{2 \dot{\xi}_{0} \cdot \dot{\eta}_{0}}{\dot{w}_{0}}; \\
\frac{d}{\delta t} &= -\dot{\xi}_{1} \cdot c^{*} \cdot G(\dot{w}_{0}) - \dot{\xi}_{0} \cdot c^{*} G'(\dot{w}_{0}) \cdot \dot{w}_{1} \\
&+ \dot{\xi}_{0} \cdot c^{*} G'(\dot{w}_{0}) \cdot \frac{2 \dot{\eta}_{0} \cdot \dot{\xi}_{0}}{\dot{w}_{0}} \\
&\text{usw.}
\end{aligned}$$

mit den Anfangsbedingungen

(

$$t = 0; \ \dot{\xi}_0(0) = v_0; \ \dot{\xi}_1(0) = \dot{\xi}_2(0) = \cdots \dot{\xi}_n(0) = 0;$$

$$\dot{\eta}_0(0) = \dot{\eta}_1(0) = \cdots \dot{\eta}_n(0) = 0;$$

$$\xi_0(0) = \eta_0(0) = \xi_1(0) = \eta_1(0) = \cdots = \xi_n(0) = \eta_n(0) = 0.$$

Dieses System ist durch Quadraturen lösbar: Addiert man nämlich die ersten beiden Gleichungen des Systems (159), so entsteht

(160)
$$\begin{aligned} \frac{d\dot{w}_0}{dt} &= g \cdot \frac{\cos\varphi - \cos a}{\sin(\varphi + a)} - c^* \cdot f(\dot{w}_0) \\ t &= \frac{1}{c^*} \cdot \int_{v_0}^{w_0} \frac{d\dot{w}_0}{a - f(\dot{w}_0)}, \quad \text{wo} \quad a &= \frac{g}{c^*} \cdot \frac{\cos\varphi - \cos a}{\sin(\varphi + a)}. \end{aligned}$$

Durch Umkehrung erhält man somit \dot{w}_0 als Funktion von t; eine weitere Quadratur liefert dann w_0 als Funktion von t. Nunmehr ist man in der Lage, auch $\dot{\xi}_0$, $\dot{\eta}_0$ und weiter ξ_0 , η_0 zu bestimmen, die aus den linearen Differentialgleichungen 1. Ordnung^(X) (159) hervorgehen:

$$(160a) \begin{vmatrix} \dot{\eta}_{0} = \frac{g}{c^{*}} \cdot \frac{\cos\varphi}{\sin(\varphi+a)} \cdot e^{-\frac{it_{0}}{\int} \frac{f(\dot{w}_{0}) \cdot d\dot{w}_{0}}{[a-f(\dot{w}_{0})] \cdot \dot{w}_{0}}} \cdot \int_{\mathbf{v}_{0}}^{\dot{w}_{0}} \frac{\int_{\mathbf{v}_{0}}^{\dot{w}_{0}} \frac{f(\dot{w}_{0}) \cdot d\dot{w}_{0}}{a-f(\dot{w}_{0})} \cdot d\dot{w}_{0}}{a-f(\dot{w}_{0})} \cdot d\dot{w}_{0}; \\ \eta_{0} = \int_{0}^{t} \dot{\eta}_{0} \cdot dt = \frac{1}{c^{*}} \cdot \int_{\mathbf{v}_{0}}^{\mathbf{w}_{0}} \frac{\dot{\eta}_{0} \cdot d\dot{w}_{0}}{a-f(\dot{w}_{0})} \cdot d\dot{w}_{0}; \end{aligned}$$

In dieser Gleichung haben wir dt durch den aus (160) folgenden Ausdruck $\frac{1}{c^*} \cdot \frac{d\dot{w_0}}{a - f(\dot{w_0})}$ ersetzt. Schließlich ist

(160 b)
$$\dot{\xi}_0 = \dot{w}_0 - \dot{\eta}_0; \quad \xi_0 = w_0 - \eta_0.$$

Nach der Berechnung von ξ_0 , $\dot{\eta}_0$ erhält man durch Addition der letzten beiden Gleichungen von (159) zunächst

(161)
$$\frac{d\dot{w}_1}{dt} = -c^* \cdot f'(\dot{w}_0) \cdot \dot{w}_1 + 2\dot{\eta}_0 \cdot \dot{\xi}_0 \cdot c^* \cdot G'(\dot{w}_0).$$

Das ist eine einfache lineare Differentialgleichung 1. Ordnung^(X), deren Lösung

(161a)
$$\begin{cases} \dot{w_1} = e^{-\int_{\mathbf{v}_0}^{\mathbf{v}_0} \frac{f'(w_0) \cdot dw_0}{a - f(w_0)}} \cdot \int_{\mathbf{v}_0}^{\mathbf{v}_0} 2\dot{\eta}_0 \cdot \dot{\xi}_0 \cdot G'(w_0) \cdot \frac{gv_0}{a - f(w_0)}} \cdot d\dot{w}_0; \\ w_1 = \frac{1}{c^*} \cdot \int_{\mathbf{v}_0}^{\dot{w}_0} \frac{\dot{w_1} \cdot dw_0}{a - f(\dot{w}_0)} \end{cases} \end{cases}$$

lautet. Für ξ_1 und η_1 sind nach Bestimmung von \dot{w}_1 wieder lineare Differentialgleichungen 1. Ordnung vorhanden, deren Lösung ebenfalls durch Quadraturen möglich ist. Das entsprechende kann allgemein auch für die höheren Glieder ξ_n, η_n gezeigt werden.

Die Entwicklungen zeigen also nicht nur die Möglichkeit der Aufspaltung in Produkte aus einer reinen Funktion des Abgangswinkels und einer gemischten Funktion der Zeit, sondern darüber hinaus auch vor allem die Zurückführung des ballistischen Problems auf Quadraturen.

Wir führen nach dem Vorbild von Popoff⁽¹⁷⁾ noch folgende ballistische Funktionen ein, die dem Beispiel der Siaccischen Funktionen entsprechen:

$$\sum (a,z) = \int_{k}^{z} \frac{dz}{a-f(z)}; \quad \Delta(a,z) = \int_{k}^{z} \frac{z \cdot dz}{a-f(z)} = \int_{k}^{z} \sum' (a,z) \cdot z \cdot dz;$$

$$A(a,z) = -\int_{k}^{z} \frac{f(z) \cdot dz}{z \cdot [a-f(z)]} = -\int_{k}^{z} \frac{f(z)}{z} \cdot \sum' (a,z) \cdot dz;$$

$$K(a,z) = \int_{k}^{z} e^{-A(a,z)} \cdot \frac{dz}{a-f(z)};$$

$$I(a,z) = \int_{k}^{z} e^{A(a,z)} \cdot \frac{dz}{a-f(z)};$$

$$M(a,z) = \int_{k}^{z} e^{A(a,z)} \cdot K(a,z) \cdot \frac{dz}{a-f(z)}.$$

Hierin ist k eine beliebige Konstante. Diese Funktionen finden

sich zum Teil bei Bianchi⁽¹⁹⁾ berechnet. Damit haben wir die Lösung des Systems (159) in folgender Gestalt

$$(163) \begin{cases} t = \frac{1}{c^*} \cdot [\Sigma(a, \dot{w}_0) - \Sigma(a, v_0)]; \\ \dot{\eta}_0 = \frac{g \cdot \cos \varphi}{c^* \cdot \sin(\varphi + a)} \cdot e^{A(a, \dot{w}_0)} \cdot [K(a, \dot{w}_0) - K(a, v_0)]; \\ \dot{\xi}_0 = \dot{w}_0 - \dot{\eta}_0; \\ \eta_0 = \frac{g \cdot \cos \varphi}{c^* \cdot \sin(\varphi + a)} \cdot \{[M(a, \dot{w}_0) - M(a, v_0)] \\ - K(a, v_0) \cdot [I(a, \dot{w}_0) - I(a, v_0)]\}; \\ w_0 = \frac{1}{c^*} \cdot [\Delta(a, \dot{w}_0) - \Delta(a, v_0)]; \quad w_0 = \xi_0 + \eta_0. \end{cases}$$

2. Die allgemeine Lösung (163) gibt in Verbindung mit (155) zu einigen wichtigen Bemerkungen Anlaß:

a) Nach dem oben Gesagten ist die Entwicklung nach Potenzen von λ nur solange möglich, wie $|\varepsilon| \leq 1$ [vgl. (155)] ist. Daraus folgt, daß das nicht unter allen Umständen auf der ganzen Flugbahn der Fall ist. Man hat aber $\varepsilon = 0$ für $\vartheta = -a$. Insbesondere muß zur Gewährleistung der Entwicklung auf der gesamten Flugbahn für beliebige Erhöhungen $\varphi < \frac{\pi}{2}$ stets $|\varepsilon| \leq 1$ sein, also auch für $t = \infty$, d. h. für $\vartheta = -\frac{\pi}{2}$. Wählt man nun $\alpha = \frac{\pi}{2}$, so ist nach den obigen Ausführungen zum zweiten Male $\varepsilon = 0$, wenn $\vartheta = -a = -\frac{\pi}{2}$; die Entwicklung ist hier folglich für die gesamte Flugbahn möglich. Nun bedeutet aber $a = \frac{\pi}{2}$ ein Koordinatensystem, wie wir es bereits beim Schwenkverfahren nach dem Angelrutenprinzip eingeführt hatten: ξ zeigt in die Abschußrichtung, η zeigt vertikal nach unten in Richtung der Schwerkraft. Die Entwicklung wird weiterhin für die gesamte Flugbahn möglich, wenn $a = -\frac{\pi}{2}$, d. h. wenn η vertikal nach oben zeigt. Die Lösungen (163) vereinfachen sich nun erheblich, wie man durch Einführung von $a = \pm \frac{\pi}{2}$ leicht feststellt; es folgt:

$$\begin{aligned} & \text{Für } a = + \frac{\pi}{2}: \\ (164) \left| \begin{array}{c} t = \int_{v_0}^{\dot{w}_0} \frac{d\dot{w}_0}{g - c^* \cdot f(\dot{w}_0)}; & \dot{\xi}_0 = v_0 \cdot e^{-\int_{v_0}^{w_0} \cdot G(w_0) \cdot dt}; \\ \dot{\eta}_0 = \dot{w}_0 - \dot{\xi}_0 \quad \text{usw.} \end{aligned} \right| \end{aligned}$$

Für
$$a = -\frac{\pi}{2}$$
:
(164a) $\begin{vmatrix} t = -\int_{\overline{g} + c^* \cdot f(\dot{w}_0)}^{d\dot{w}_0}; & \dot{\xi_0} = v_0 \cdot e^{-\int_{0}^{t} c^* \cdot G(\dot{w}_0) \cdot dt}; \\ \dot{\eta}_0 = \dot{w}_0 - \dot{\xi}_0 & \text{usw.} \end{vmatrix}$

Außerdem tritt in beiden Fällen φ in der Lösung überhaupt nicht mehr auf. Man wird also zweckmäßig immer eines dieser beiden Koordinatensysteme benutzen, je nachdem φ klein oder groß ist: ist φ klein, so nimmt man das erste, da dann λ klein wird; ist φ groß, so nimmt man das zweite, da in diesem Falle λ ebenfalls klein wird. In den Parameterentwicklungen (156) sind dann $\xi(\lambda, t)$ und $\eta(\lambda, t)$ in unendliche Summen von Produkten aufgespalten, bei denen ein Faktor nur von der Erhöhung $\left|\lambda^n = \sin^{2n}\left(\frac{90^0 + \varphi}{2}\right)\right|$, der andere nur von der unabhängigen Variabeln t $[\xi_n = \xi_n(t)]$ abhängt. Sind also die Funktionen $\xi_n(t)$ und $\eta_n(t)$ für eine feststehende Anfangsgeschwindigkeit v_0 und einen festen Beiwert c^{*} ermittelt, so lassen sich $\xi(\lambda, t)$ und $\eta(\lambda, t)$ für beliebige λ , d. h. beliebige Abgangswinkel φ ermitteln. Den Vorteil dieses Verfahrens werden wir weiter unten erkennen. Bevor wir jedoch auf die Anwendungen dieser Formeln eingehen, beschäftigen wir uns noch mit einem anderen Spezialfall der Gleichungen (163).

b) Man erkennt schnell, daß die mit (162) eingeführten ballistischen Funktionen zum Teil in die Funktionen von Siacci übergehen, wenn $a \rightarrow 0$ strebt, d. h. wenn $\varphi = a$ wird. Gleichung (160) zeigt, daß dann φ auch in w_0 und w_0 nicht mehr auftritt. Die Lösungen (163) nehmen mit den Bezeichnungen von Siacci die Gestalt an:

(165)
$$t = \frac{1}{c^*} \cdot [T(\dot{w}_0) - T(v_0)];$$
$$\dot{\eta}_0 = \frac{1}{2 c^* \cdot \sin \varphi} \cdot \dot{w}_0 \cdot [J(\dot{w}_0) - J(v_0)];$$
$$\dot{\xi}_0 = \dot{w}_0 - \dot{\eta}_0;$$
$$\eta_0 = \frac{1}{2 c^{*2} \cdot \sin \varphi} \cdot [\{A(\dot{w}_0) - A(v_0)\} - J(v_0) \cdot \{D(\dot{w}_0) - D(v_0)\}];$$
$$\xi_0 = \frac{1}{c^*} \cdot [D(\dot{w}_0) - D(v_0)] - \eta_0.$$

 $\dot{w_1}, \xi_1, \dot{\eta_1}$ usw. bleiben formal ungeändert. — Wird auf diese Gleichungen die Koordinatentransformation (153) angewandt, so erhält man die Flugbahngleichungen in kartesischen Koordinaten:

(166)
$$\begin{cases} x = \frac{\cos \varphi}{c^*} \cdot [D(\dot{w}_0) - D(v_0)]; \\ y = x \cdot \operatorname{tg} \varphi - \frac{1}{c^{*2}} \cdot [D(\dot{w}_0) - D(v_0)] \cdot \left| \frac{A(\dot{w}_0) - A(v_0)}{D(\dot{w}_0) - D(v_0)} - J(v_0) \right| \\ t = \frac{1}{c^*} \cdot [T(\dot{w}_0) - T(v_0)]. \end{cases}$$

An diesen Beziehungen müssen noch die durch die höheren Glieder der Entwicklungen (156) verursachten Änderungen ξ_n , η_n , (n > 0), angebracht werden. Man kann aber deren Einfluß für Flachbahnen bzw. für kurze Teile beliebiger Bahnen in gewisser Weise

Rechnung tragen, indem für $\sqrt{1 - \frac{4 \eta \cdot \dot{\xi}}{w^2} \cdot \lambda}$ ein passender Mittelwert eingeführt wird, ähnlich wie es schon bei dem Verfahren von Siacci für β gemacht wurde. Der Mittelwert ist zu bilden aus $\mu = \sqrt{1 - \epsilon \cdot \lambda}$; wegen $\epsilon = 0$ ist am Anfang der Bahn $\mu = 1$; im Gipfel ist $\epsilon = 1$, d. h. $\mu = \cos \varphi$; am Ende der Bahn ist

$$\vartheta \sim -\varphi = -\alpha$$
, d. h. $\mu \sim 1$

Als Mittelwert könnte man also nehmen $\mu_m = \frac{1 + \cos \varphi}{2} = \cos^2 \frac{\varphi}{2}$. Somit soll sein

$$c^* \cdot f(\dot{w_0} \cdot \sqrt{1 - \varepsilon} \cdot \lambda) \sim c^* \cdot f(\dot{w_0} \cdot \cos^2 \frac{\varphi}{2}) = c^* \cdot f(\dot{w_0} - \dot{w_0} \cdot \sin^2 \frac{\varphi}{2})$$
$$\sim c^* \cdot f(\dot{w_0}) \cdot \left[1 - \sin^2 \frac{\varphi}{2} \cdot n(\dot{w_0})\right]$$

Um unsere Formeln (165) ohne die durch η_1, ξ_1, \ldots verursachten Korrekturen anwenden zu können, müßte also c^* durch $c^* \cdot \beta$ ersetzt werden, wo näherungsweise $\beta = 1 - n(\dot{w_0}) \cdot \sin^2 \frac{\varphi}{2}$ ist. In erster Annäherung ist $n(\dot{w_0}) \sim n(v_0)$. Somit haben wir den folgenden β -Wert:

(167)
$$\beta = 1 - \frac{n(v_0)}{2} \cdot [1 - \cos \varphi].$$

c) Wir wenden uns nunmehr wieder dem Fall zu, daß $a = \pm \frac{\pi}{2}$ ist. Dabei genügt die Beschränkung auf $a = \pm \frac{\pi}{2}$, da die entstehenden Formeln nur Vorzeichenunterschiede haben, sonst aber keine formalen Verschiedenheiten aufweisen. Die Entwicklung (156) läßt eine wichtige praktische Verwendung zu, wie der Verfasser⁽⁷⁹⁾⁽⁸¹⁾ nachweisen konnte. Die Reihen bestehen in diesem Falle, worauf bereits hingewiesen wurde, aus einer Summe von Produkten aus einem nur vom Abgangswinkel abhängigen, konstanten Faktor und einer nur von der Zeit abhängigen Funktion. Beschränkt man sich auf die ersten beiden Glieder der Reihenentwicklung^{*}, entstehen die Näherungslösungen

(168)
$$\xi(\lambda, t) = \xi_0(t) + \lambda \cdot \xi_1(t); \quad \eta(\lambda, t) = \eta_0(t) + \lambda \cdot \eta_1(t)$$

oder in kartesischen Koordinaten vermittelst (153) und der Beziehung $\lambda = \sin^2\left(\frac{\pi}{4} + \frac{\varphi}{2}\right) = \frac{1 + \sin\varphi}{2}$:

(168a)
$$\begin{cases} x(\varphi, t) = [\xi_0 + \frac{1}{2}\xi_1] \cdot \cos \varphi + \xi_1 \cdot \frac{\sin 2\varphi}{4}; \\ y(\varphi, t) = x \cdot \operatorname{tg} \varphi - \frac{1}{2}\eta_1 \cdot \sin \varphi - [\eta_0 + \frac{1}{2}\eta_1]. \end{cases}$$

Die Funktionen $\xi_0(t)$, $\xi_1(t)$, $\eta_0(t)$, $\eta_1(t)$ ließen sich ohne weiteres nach den obigen Formeln berechnen. Der Rechenaufwand würde allerdings verhältnismäßig groß werden, besonders bei langen Bahnen. Da es sich bei der Hauptaufgabe der praktischen Ballistik aber meist darum handelt, für ein bestimmtes Geschoß bei einer bestimmten Anfangsgeschwindigkeit die Gesamtheit der Flugbahnen der Schar, d. h. die Flugbahnen bei allen Erhöhungen zu bestimmten, schlägt man zweckmäßiger folgenden Weg ein: Nach

^{*} Bereits Weißmann^(79a) wies darauf hin, daß schon die Beschränkung auf das 1. Glied bei kleinen Bögen der Bahn brauchbare Näherungsergebnisse liefern kann.

einem hinreichend genauen graphischen oder numerischen Verfahren (s. w. u.) werden 2 Flugbahnen der Schar bestimmt. Dann entstehen zur Bestimmung der ξ_0 , ξ_1 , η_0 , η_1 je zwei lineare Gleichungen

$$\begin{split} \xi(\lambda_1, t) &= \xi_0(t) + \lambda_1 \cdot \xi_1(t); \quad \eta(\lambda_1, t) = \eta_0(t) + \lambda_1(t) \cdot \eta_1(t); \\ \xi(\lambda_2, t) &= \xi_0(t) + \lambda_2 \cdot \xi_1(t); \quad \eta(\lambda_2, t) = \eta_0(t) + \lambda_2(t) \cdot \eta_1(t), \end{split}$$

worin λ_1 , λ_2 die beiden Bahnen der Schar charakterisieren. Für jedes t kann man daher $\xi_0(t)$ und $\xi_1(t)$ aus dem ersten Gleichungspaar bestimmen.

Man erhält

(169)
$$\xi_0(t) = \frac{\lambda_2 \cdot \xi(\lambda_1, t) - \lambda_1 \cdot \xi(\lambda_2, t)}{\lambda_2 - \lambda_1}; \ \xi_1(t) = \frac{\xi(\lambda_2, t) - \xi(\lambda_1, t)}{\lambda_2 - \lambda_1}$$

Für η_0 , η_1 gilt genau das gleiche; wir lassen sie daher auch im folgenden ohne Erwähnung (vgl. zum Vorstehenden auch: Sauer⁽⁷⁹c)). — Diese Art der Bestimmung der von φ unabhängigen Funktionen ξ_0 und ξ_1 hat den großen Vorteil, daß auf diese Weise auch die mit höheren Potenzen von λ vorkommenden Glieder in gewissem Maße berücksichtigt werden. Es fragt sich nun noch, welche Ausgangsbahnen man am zweckmäßigsten wählt, um mit diesem Verfahren in einem bestimmten Gebiet ($\lambda_0 < \lambda < \lambda_e$) zu "interpolieren".

Schreiben wir die Lösung in der Form

(170)
$$\begin{cases} \xi(\lambda, t) = \xi_0(t) + \lambda \cdot \xi_1(t) + \lambda^2 \cdot [\xi_2(t) + \lambda \cdot \xi_3(t) + \cdots] \\ = \xi_0(t) + \lambda \cdot \xi_1(t) + \lambda^2 \cdot \varrho, \end{cases}$$

wo ϱ also ein Restglied darstellt und als von λ fast unabhängig angesehen werde. Wendet man auf den Ausdruck (170) die Formel (169) an, so folgt

(170a)
$$\tilde{\xi}_0(t) = \xi_0(t) - \lambda_1 \cdot \lambda_2 \cdot \varrho; \quad \tilde{\xi}_1(t) = \xi_1(t) + (\lambda_1 + \lambda_2) \cdot \varrho.$$

Wird mit diesen Funktionen eine Bahn bei beliebigem λ interpoliert, so erkonnt man, daß bei linearer Interpolation mit $\overline{\xi}_0$ und $\overline{\xi}_1$ über λ gegenüber der Form (170) der Fehler

(171) $\Delta \xi = \bar{\xi}(\lambda, t) - \xi(\lambda, t) = -(\lambda - \lambda_1) \cdot (\lambda - \lambda_2) \cdot \varrho$ gemacht wird. Dieser wird absolut am größten für $\lambda = \frac{\lambda_1 + \lambda_2}{2}$, d. h. es wird

(171a)
$$\Delta \xi_{\max} = \frac{(\lambda_1 - \lambda_2)^2}{4} \cdot \varrho$$

Falls nun λ_0 und λ_{ϵ} die äußersten Erhöhungen der gesuchten Schar charakterisieren, so werden in diesem Intervall die Absolutfehler am kleinsten, wenn $\Delta \xi$ am Anfang, in der Mitte und am Ende dieses Intervalls absolut gleich groß ist. In der Mitte ist $\Delta \xi$ gemäß (171a) bestimmbar, am Anfang und am Ende gemäß (171). Somit hat man zur Bestimmung der günstigsten Erhöhungen die quadratische Gleichung

$$(\lambda - \lambda_1) \cdot (\lambda - \lambda_2) = \left(\frac{\lambda_1 - \lambda_2}{2}\right)^2$$

Die Wurzeln dieser Gleichung sind λ_0 und λ_e ; folglich hat man

(172)
$$\lambda_1 = \frac{\sqrt{2}-1}{2\sqrt{2}} \cdot \lambda_{\bullet} + \frac{\sqrt{2}+1}{2\sqrt{2}} \cdot \lambda_0; \ \lambda_2 = \frac{\sqrt{2}+1}{2\sqrt{2}} \cdot \lambda_{\bullet} + \frac{\sqrt{2}-1}{2\sqrt{2}} \cdot \lambda_0.$$

Beispiel. Soll in dem Intervall $0^{\circ} < \varphi < 90^{\circ}$ interpoliert werden, so ist $\lambda_0 = 0.5$; $\lambda_e = 1$ und nach (172): $\lambda_1 = 0.57323$; $\lambda_2 = 0.92677$, d. h. $\varphi_1 = 8.4^{\circ}$; $\varphi_2 = 58.6^{\circ}$. Stange⁽⁸⁰⁾ hat gezeigt, daß bei dieser Wahl von λ_1 und λ_2 der Ausgangsbahnen wirklich im Intervall (λ_0, λ_e) der maximale Absolutfehler kleiner wird als bei jeder anderen Wahl von λ_1, λ_2 .*

Wir hatten uns bisher auf konstantes Luftgewicht und konstante Temperatur beschränkt. Das ist aber nicht nötig für die Zulässigkeit der Parameterentwicklungen. Ist z. B. $\delta = \delta(y)$, so kann man zunächst schreiben, da $\lambda = \frac{1 + \sin \varphi}{2}$:

$$y = \xi \cdot \sin \varphi - \eta = 2\lambda \cdot \xi - (\xi + \eta) = 2\lambda \cdot \xi - w$$
$$= -w_0 + \lambda \cdot (2\xi_0 - w_1) + \cdots;$$

nach dem Taylorschen Satz ist also

$$\begin{split} \delta\left(y\right) &= \delta\left[-w_{0} + \lambda \cdot \left(2\,\xi_{0} - w_{1}\right) + \cdots\right] \\ &= \delta\left(-w_{0}\right) + \lambda \cdot \left(2\,\xi_{0} - w_{1}\right) \cdot \delta'\left(-w_{0}\right). \end{split}$$

Das Entsprechende gilt für T(y), was ebenfalls nach Potenzen von λ entwickelt werden kann. Nimmt man hierauf Rücksicht, so

^{*} Darüber hinaus zeigt Stange, wie λ_1 und λ_2 zu wählen sind, wenn es sich nur darum handelt, die Elemente in der Mündungswaagerechten mit möglichst kleinen Fehlern zu bestimmen.

treten an die Stelle der Differentialgleichungen (159) bzw. (164) unter der Voraussetzung $a = +\frac{\pi}{a}$: Für konstante Temperatur, aber höhenveränderliches Luftgewicht

Es sei $a = \frac{A}{T_0}; \quad b = \frac{T_b}{T_0}; \quad \varepsilon = \frac{1}{R \cdot A} - \frac{1}{2}; \quad \tau = b + a \cdot w_0;$ $u = \dot{w_0} \cdot \tau^{-\frac{1}{2}}.$ Dann ist: $\ddot{w_0} = g - c^* \cdot \tau^{\varepsilon} \cdot \dot{w_0} \cdot G(u); \quad \ddot{\xi_0} = -c^* \cdot \dot{\xi_0} \cdot \tau^{\varepsilon} \cdot G(u);$ $\eta_0 = w_0 - \xi_0;$ $\ddot{w_1} + \dot{w_1} \cdot c^* \cdot \tau^{\varepsilon} \cdot f'(u) + w_1 \cdot \left\{\varepsilon - \frac{n(u) - 1}{2}\right\}$ $\cdot a \cdot c^* \cdot \tau^{\varepsilon - \frac{1}{2}} \cdot f(u) = 2 \dot{\xi_0} \cdot \dot{\eta_0} \cdot c^* \cdot \tau^{\varepsilon - \frac{1}{2}} \cdot G'(u)$ $+ 2a \cdot \xi_0 \cdot \left(\varepsilon - \frac{n - 1}{2}\right) \cdot c^* \cdot \tau^{\varepsilon - \frac{1}{2}} \cdot f(u)$ usw. Anfangsbedingungen wie in (159).

Beispiel. (Aus einer Veröffentlichung des Verfassers(79) entnommen.) $v_0 = 400 \text{ m/s}$, amerikanisches Widerstandsgesetz (s. S. 31), $c^* = 0, 1$. Ausgangsbahnen $\varphi_1 = 0^\circ (\lambda_1 = 0, 5); \varphi_2 = 30^\circ (\lambda_2 = 0, 75)$. Die Elemente dieser Bahnen sind nebenstehend in den Spalten 1-4 angegeben. Spalten 5-12 enthalten die Funktionen ξ_0 usw. Spalten 13-16 geben die daraus berechneten Elemente einer Bahn mit 15° Erhöhung mit den Abweichungen gegen die wahren Werte an (Abweichungen in Klammern).

Man kann aus den Funktionen $\xi_0(t), \ldots,$... auch die Erhöhung bestimmen, bei der in der Mündungswaagerechten die Flugzeit terreicht wird. Denn es ist für y = 0:

$$\frac{\eta(\lambda,t)}{\xi(\lambda,t)} = \sin \varphi, \quad \text{d. h.} \quad \frac{\eta_0 + \lambda \cdot \eta_1}{\xi_0 + \lambda \cdot \xi_1} = 2\lambda - 1.$$

Das ist eine quadratische Gleichung für λ . Für t = 24 s erhält man z. B. daraus $\lambda = 0.65612$ oder $\varphi = 18,19^{\circ}$ (richtig ist $18,21^{\circ}$). Damit findet man dann weiter X = 7955 m (Fehler = + 8m) und $\omega = 20,98^{\circ}$ (Fehler = --0,03°), $v_e = 318,4$ m/s (richtig ist 319,6 m/s).

Mit diesen Beispielen ist die Anwendungsmöglichkeit der Parameterentwicklungen noch keineswegs erschöpft. Wir werden weiter unten bei der Behandlung der Flugbahnstörungen noch einmal auf dieses Verfahren zurückgreifen*.

c) Teilbogenberechnung der Flugbahnen

Bisher haben wir die Integration der ballistischen Differentialgleichungen der Bewegung unter beschränkenden Annahmen über die Form des Widerstandsgesetzes, über die Höhenveränderlich-* An Arbeiten, die ebenfalls auf der Grundlage der Popoffschen Parameterentwicklungen stehen, sind noch zu nennen die von Weißmann^(79a) (numerische Prüfung) und die von Eggers^(79b) (Verwendung in einem Teilbogenverfahren; s. § 16c).

			-	
16	$\theta(15^{\circ})$	(-0.02)	-10.38	
15	v(15°)	346.5 (-0.1)	325,3 ($-0,4$)	
14	$ y(15^{\circ}) $	479 (0)	313 (-1)	(-2)
13	$x(15^{\circ}$	2915 (0)	5574 (-2)	8044 (-8)
12	'n.	4,2	27,8	ł
11	مند ·	31,2	101,2	1
10	ŋ,	71,9	126,9	1
6	ۍب. م	338,5	267,6	
œ	1,1	8,6	118,4	521,2
7	£1	86,2	602,6	1740,6
9	1,0	297,0	1105,8	2272,7
ų	¢0	2963,6	5391,3	7231,8
4	η (30°)	303,5	1195,2	2663,6
3	$\xi(30^{\circ})$	3028,3	5843,3	8537,2
2	$\eta(0^{\circ})$	301,3	1165,0	2533,3
1	€(0°)	3006,7	5692,6	8102,1
₽ Į	1	œ	16	24

keit der Luftdichte und der Lufttemperatur und über den Abgangswinkel vorgenommen. Diese Einschränkungen sind aber nur für einen kleinen Teil der in der Praxis vorkommenden Fälle möglich. Zudem können durch die beschriebenen Näherungsannahmen immer nur bestimmte Elemente einigermaßen genau mit der Wirklichkeit in Einklang gebracht werden. Die moderne Artillerie arbeitet mit Anfangsgeschwindigkeiten, die 1000 m/s erreichen und darüber hinausgehen können; dadurch werden Steighöhen der Flugbahn erreicht, bei denen Luftdichte und Lufttemperatur auf Bruchteile ihrer Bodenwerte absinken und damit den Luftwiderstand erheblich verringern. Dazu kommt, daß auch Flugbahnpunkte außerhalb der Mündungswaagerechten genau bekannt sein müssen, um Luftziele wirkungsvoll bekämpfen zu können. Um allen diesen Forderungen rechnerisch gerecht zu werden, zerlegt man die Flugbahn in eine größere Anzahl genügend kleiner Teilbögen, statt den gesamten Flugbahnbogen in einem Zuge zu berechnen, und bestimmt die Endelemente jedes kleinen Teilbogens als Funktion der Anfangselemente dieses Bogens. Es ist klar, daß die Genauigkeit praktisch beliebig weit getrieben werden kann, wenn nur die Teilbögen entsprechend klein gewählt werden. Wir werden im folgenden drei Methoden untersuchen, die das Prinzip einiger in Deutschland, Frankreich und Amerika entwickelten Integrationsverfahren dieser Art veranschaulichen. Zu den in die Reihe solcher Teilbogenverfahren gehörigen Methoden rechnen wir nicht die Verfahren der numerischen Integration von Differentialgleichungen (z. B. Runge-Kutta u. ä.); diese werden wir weiter unten gesondert behandeln.

1. Besonders O. v. Eberhard⁽⁸²⁾ hat darauf hingewiesen, daß die für genaue Flugbahnrechnungen nicht in allen Fällen geeignete Methode von Siacci für die Teilbogenberechnung nutzbar gemacht werden müsse, da die dafür vorhandenen ballistischen Tabellenwerke unter Umständen mit großem Vorteil herangezogen werden könnten. Er hat dafür auch geeignete Formeln angegeben. Wir wollen hier eine im Prinzip ähnliche Methode beschreiben, die jedoch von den Eberhardschen Entwicklungen in manchen Punkten recht erheblich abweicht.

Wirschreiben die Hodographengleichung zunächst in der Form(46)

$$\frac{du}{dz} = \frac{dv}{v \cdot dz} = \operatorname{Tang} z + \frac{c \cdot \delta_0}{g} \cdot \frac{\delta(y)}{\delta_0} \cdot v^2 \cdot K\left(v \cdot \left| \frac{T_0}{T(y)} \right| \right).$$

Dazu kommt die Differentialgleichung für y

$$\frac{dy}{dz} = -\frac{v^2}{g} \cdot \operatorname{Zang} z.$$

Führen wir hier zunächst die neuen Veränderlichen $w = v \cdot \sqrt[]{\frac{T_0}{T(y)}}$, $d\eta = \frac{T_0}{T(y)} \cdot dy$ ein, so erhalten wir zunächst, wenn wir berücksichtigen, daß

$$\frac{p(y)}{p_0} = \frac{\delta(y)}{\delta_n} \cdot \frac{T(y)}{T_0} = e^{-a \cdot \eta}; \quad a = \frac{1}{R \cdot T_5}; \quad T(y) = T_0 - A \cdot y$$
[vgl. (13) bis (19)]

ist:

(174)
$$\begin{cases} \frac{d\eta}{dz} = -\frac{w^2}{g} \cdot \operatorname{Tang} z; \\ \frac{dw}{dz} = w \cdot \operatorname{Tang} z \cdot \left(1 - \frac{w^2}{2g} \cdot \frac{\Lambda}{T_0}\right) + \frac{c \cdot \delta_0}{g} \cdot w \cdot f(w) \cdot e^{-a \cdot \eta}. \end{cases}$$

Aus den Formeln $d\eta = dy \cdot \frac{T_0}{T(y)}$ und $T(y) = T_0 - \Lambda \cdot y$ ergibt sich folgender Zusammenhang zwischen y und η :

(175)
$$e^{-\frac{\Lambda}{T_0}\cdot\eta} = 1 - \frac{\Lambda}{T_0}\cdot y$$
, d. h. $y = \frac{1 - e^{-\frac{\Lambda}{T_0}\cdot\eta}}{\frac{\Lambda}{T_0}}$.

Das System (174) soll nun zur Berechnung der Flugbahnelemente so umgeformt werden, daß die von Siacci eingeführte Funktion

$$J(u) = -2g \cdot \int \frac{du}{u \cdot f(u)},$$

die bekanntlich für das Widerstandsgesetz von Siacci tabuliert vorliegt, benutzt werden kann. Die von Siacci zugrunde gelegten Werte in J(u) seien mit g_s bzw. $f_s(u)$ bezeichnet; hierbei ist $g_s = 9,8047 \text{ m/s}^2$. Für ein beliebiges Widerstandsgesetz f(w) kann man nun immer schreiben

(176)
$$f(w) = h(w) \cdot f_s(w),$$

Athen, Ballistik

wo h(w) aus $h(w) = \frac{f(w)}{f_a(w)}$ bestimmt wird. Somit geht die 2. Gleichung in (174) über in

(174a)
$$\begin{vmatrix} -2g_s \cdot \frac{dw}{w \cdot f_s(w)} = - \left| \operatorname{\mathfrak{Tang}} z \cdot \frac{2g_s - \frac{\Lambda}{T_0} \cdot \frac{g_s}{g} \cdot w^{\mathbf{a}}}{f_s(w)} + 2c \cdot \delta_0 \cdot \frac{g_s}{g} \cdot h(w) \cdot e^{-a \cdot \eta} \right| \cdot dz.$$

In dieser Gleichung kann g, das von der geographischen Breite und von der Höhe über dem Erdboden abhängt, von g_s verschieden sein. Zum Zwecke der Integration auf einem Teilbogen der Flugbahn machen wir nun die Annahme, daß

(174 b)
$$\begin{cases} 1. \quad \frac{2g_s - \frac{A}{\sqrt{T_0}} \cdot \frac{g_s}{g} \cdot w^2}{f_s(w)} = \overline{A} \quad \text{und} \\ 2. \quad 2\frac{\delta_0 \cdot g_s}{g} \cdot \frac{g_s}{g} \cdot h(w) \cdot e^{-a \cdot \eta} = \overline{B} \end{cases}$$

im Intervall $\Delta z = z_1 - z_0$ konstant seien und Mittelwerte dieser an sich veränderlichen Funktionen darstellen. Dann ergibt die Integration von (174a):

(177 a)
$$J(w_1) = J(w_0) + \frac{\overline{A}}{0,4343} \cdot \log \frac{\mathfrak{Coj} z_0}{\mathfrak{Coj} z_1} + c \cdot \overline{B} \cdot (z_0 - z_1)$$
$$= J(w_0) + A \cdot \log \frac{\mathfrak{Coj} z_0}{\mathfrak{Coj} z_1} - B \cdot \Delta z$$

Die Zeiger 0 bzw. 1 sollen andeuten, daß für das betreffende Element sein Wert am Anfang bzw. am Ende des Teilbogens zu nehmen ist. — Nachdem also $J(w_1)$ numerisch bekannt ist, kann mit Hilfe der J(u)-Tabelle von Siacci das Argument w_1 bestimmt werden (für J(u) vgl. auch den Tabellenanhang). Um hieraus die Geschwindigkeit $v_1 = w_1 \cdot \int \frac{\overline{T(y_1)}}{T_0}$ am Ende des Teilbogens zu berechnen, muß y_1 oder, was dasselbe ist, η_1 bekannt sein; in der Gleichung

$$d\,\eta = -\,rac{w^{a}}{g}\cdot \operatorname{Tang} z \cdot dz$$

ersetzen wir $\frac{w^2}{g}$. Tang z durch den konstanten Mittelwert

$$\mu = \frac{w_0 \cdot w_1}{g} \cdot \sqrt{\operatorname{Tang} z_0 \cdot \operatorname{Tang} z_1}$$
 ,

womit durch Integration dann sofort

(177 b)
$$\eta_0 - \eta_1 = \frac{w_0 \cdot w_1}{g} \cdot \sqrt{\operatorname{Tang} z_0 \cdot \operatorname{Tang} z_1} \cdot \Delta z$$

erhalten wird.*

Mit Hilfe der nunmehr entwickelten Formeln stellt sich der Gang der Berechnung für einen Teilbogen folgendermaßen dar: Die Werte η_0 , w_0 , z_0 am Anfang des Teilbogens sind bekannt, entweder als Anfangsbedingungen der Flugbahn oder als Endelemente des vorhergehenden Teilbogens. Die Werte η_1 , w_1 am Ende des zu berechnenden Teilbogens werden geschätzt bzw. aus den vorangehenden Teilbögen extrapoliert. Sodann bildet man die Ausdrücke \overline{A} bzw. \overline{B} am Anfang und am Ende des Teilbogens und nimmt die geometrischen Mittel

$$\overline{A}_m = \sqrt{\overline{A}_0 \cdot \overline{A}_1}$$
 bzw. $\overline{B}_m = \sqrt{\overline{B}_0 \cdot \overline{B}_1}$

als konstante Mittelwerte auf dem betrachteten Teilbogen. Mit den Formeln

(178)
$$\begin{cases} w_1 = \arg\{J(w_1)\} = \arg\{J(w_0) + A_m \cdot \log \frac{\mathfrak{Co}[z_0]}{\mathfrak{Co}[z_1]} - B_m \cdot \Delta z\} \\ \eta_1 = \eta_0 - \frac{w_0 \cdot w_1}{g} \cdot \sqrt{\mathfrak{Tang} z_0 \cdot \mathfrak{Tang} z_1} \cdot \Delta z; \\ A_m = \frac{\overline{A}_m}{0,4343}; \quad B_m = c \cdot \overline{B}_m \end{cases}$$

findet man verbesserte Endwerte w_1 , η_1 , mit denen die Rechnung wiederholt wird. Diesen Prozeß wiederholt man so lange, bis w_1 , η_1 sich nicht mehr ändern. Für die Rechnung ist es zweckmäßig, die

^{*} Der Wert von $(\eta_1 - \eta_0)$ kann darüber hinaus noch genauer bestimmt werden, wenn man von der Reihenentwicklung $(\eta_1 - \eta_0)$ Gebrauch macht, wie es z. B. bei der "Methode G.H.M." für ϱ geschieht (vgl. Formel (180a), S. 167).

Funktionen A und $B \cdot e^{a \cdot \eta}$, sowie $e^{-a \cdot \eta}$ vorher zu tabulieren, was keine Schwierigkeiten macht. — Nachdem die endgültigen Werte w_1, η_1, z_1 festliegen, bestimmen sich v_1, y_1, ϑ_1 aus den Formeln

$$v_1 = w_1 \cdot \int \frac{\overline{T}(y_1)}{\overline{T}_0}; \quad y_1 = \frac{1 - e^{-\frac{A}{T_0} \cdot \eta_1}}{\frac{A}{T_0}}; \quad \vartheta_1 = 2 \operatorname{arctg} e^{z_1} - \frac{\pi}{2}.$$

Auf diese Weise ergeben sich alle Werte v, y auf der ganzen Flugbahn als Funktionen von z. Die Elemente x und t findet man zum Schluß durch eine numerische Quadratur (s. § 19).

Beim Rechnen selbst wird zweckmäßig ein festes Rechenschema benutzt, das etwa die Form des nachstehend gerechneten Beispiels hat.

Beispiel. Es sei: $\frac{c \cdot \delta_0}{g} = 2,436$; f(w) aus der Kruppschen Tabelle; $\Lambda = 0,006 \frac{\text{Grad C}}{\text{m}}$; $T_0 = 283^\circ$ abs.; $\delta_0 = 1,22 \text{ kg/m}^3$; $v_0 = 850 \text{ m/s}$; $g_s = 9,8047 \text{ m/s}^2$; $\varphi = 22^\circ 19' 50''$, d. h. $z_0 = 0,40$; $g = 9,8 \text{ m/s}^2$. In diesem Beispiel werde der erste Teilbogen mit $\varDelta z = z_1 - z_0 = -0,08$ berechnet.

Die genaue Integration dieser Bahn, die von Stanke⁽¹⁰⁰⁾ durchgeführt wurde, liefert $z_1 = 0.32$; $y_1 = 1414$; $w_1 = 605.9$. Die Fehler unserer Integrationsmethode sind also verhältnismäßig gering. Sie wären noch herabzudrücken durch Verkleinerung der Teilbögen; gerade in unserem Beispiel haben wir den ersten Teilbogen im Verhältnis zur Anfangsgeschwindigkeit sehr groß gewählt (die Geschwindigkeitsabnahme beträgt auf diesem Teilbogen über 250 m/s!).

2. Eine in Frankreich vorzugsweise angewandte Teilbogenmethode besteht darin, auf jedem Teilbogen mit einem konstanten Mittelwert der Luftwiderstandsverzögerung zu rechnen. Dies ist die sog. "Methode G. H. M." (Garnier-Haag-Marcus⁽¹³⁾), die während des Weltkrieges entstand. Wir schreiben die Hodographengleichung in der Form

$$rac{d(v\cdot\cosartheta)}{v\cdot\cosartheta} = arrho\cdotrac{d\,artheta}{\cosartheta} = arrho\cdot dz; \quad oldsymbol{z} = \ln ext{tg} \Big(rac{\pi}{4} + rac{artheta}{2}\Big).$$

Dabei ist, wenn konstante Temperatur und mit der Höhe veränderliche Luftdichte gemäß der Everlingschen Verteilung angenommen werden,

$$\varrho = \frac{c^*}{g} \cdot e^{-ky} \cdot f(v).$$

Nr.	Element	Formel	1. Rechnung	2. Rechnung	Ľ.	Element	Formel	1. Rechnung	2. Rechnung
H	0 a	gegeben oder Vorstufe	850	850	23	$A_m \cdot \log \left(\frac{\operatorname{col} z_0}{\operatorname{Kol} z_1} \right)$	(178)	0,001216	0,001191
01 M	$T_0^{y_0};T_1$	Ta belle	10	10	252	$-B_m \cdot dz$ $J(w_0)$. :	0,040069 0,136235	0,040054 0,136235
4	$VT_0:T_1$	*	-	1	26	$J(w_1)$		0,17752	0,17748
υ.	m_0	$v_0 \cdot VT_0 : \overline{T_1}$	850	850	27	m	:	603,5	603,6
9	A_0	(147 b) oder	0,04603	0,04603	88 S	Lang 20	Tabelle	0.37995	0.37995
1		geochen oder			8 8 8	V3 nn 2. : 0		0.19690	0.19690
(×0 ×0	Vorstufe	0,40	0,40	31	1/10,	wo.VTang 20:9	167,365	163,365
x c	2 12 J	$z_0 + \Delta z$	1 00107	1.00107	32	Lang 21	Tabelle	0,30951	0,30951
<u>م</u>	60 z0	Tabelle	1.06107	1.05164	ŝ	Lang 21 : 9	1	0,03158	0,03158
	Col z. : Col z.	:	1.02798	1.02798	34	VLang z ₁ : g	ļ	0,17772	0,17772
12	log (Cof zo: Cof z1)	1	0,011985	0,011985	35	ν <u>η</u> ,	w1 .VLangz1:9	107,254	107,272
13	B_0	(147 b) oder Tabelle	0,55507	0,55507	36	$V\eta_0'\cdot\eta_1'$	(178)	17950,6	17953,6
14	w1	geschätzt	600	603,5	3	$\eta_1 - \eta_0$	(178)	1436,0	1436,3
15	y_1	I	1400	1400.5	$\frac{38}{38}$	u_1	1	1436,0	1436,3
16	1/1	(175)	1435,5	1436,0	39	<i>3</i> ,1	(175)	1400,5	1401
17	$a\cdot \eta_1$	1	0,17318	0,17324	40	$T(y_1)$: $T(y_0)$	Tabelle		0,97032
18	$e^{-a \cdot \eta_1}$	Tabelle	0,84099	0,84094	41	$\sqrt{T(y_1):T(y_0)}$		l	0,98505
19	B	f (174 b) oder	0,45195	0,45151	42	v_1	aus w_1		594,6
20	A_1	Tabelle	0,22369	0,21462	43	ϑ_1	aus z_1	1	18° 1′ 43″
21	B_m	$VB_0 \cdot B_1$	0,50086	0,50067					
22	A_m	$VA_0 \cdot A_1$	0,10147	0,09940					

§ 16 c. Teilbogenberechnung der Flugbahnen

Somit wird

(179)
$$\begin{cases} \frac{d\varrho}{dz} = \cos\vartheta \cdot \frac{d\varrho}{d\vartheta} = -\varrho \cdot (n \cdot \varrho + m \cdot \sin\vartheta), \\ \text{wo} \quad n = v \cdot \frac{f'(v)}{f(v)}; \quad m = n + \frac{k \cdot v^2}{g}. \end{cases}$$

Die ganze Flugbahn wird in Einzelbögen aufgeteilt, deren Anfangsund Endneigung durch das konstante Intervall $\Delta z = z_1 - z_0$ gegeben sind. Ersetzen wir nun in (179) die Differentiale $d\varrho$ und dzdurch die endlichen Differenzen $\Delta \varrho$ und Δz , so gilt näherungsweise

$$\Delta \varrho = -\varrho_0 \cdot (n \cdot \varrho_0 + m_0 \cdot \sin \vartheta_0) \cdot \Delta z$$

und für den Mittelwert ϱ_m auf dem Teilbogen: $\varrho_m = \frac{1}{2}(\varrho_0 + \varrho_1)$, d. h.

$$\varrho_m = \varrho_0 + \frac{\varDelta \varrho}{2} \, .$$

Schließlich wird nach Integration der Hodographengleichung

(180)
$$\ln \frac{v_1 \cdot \cos \vartheta_1}{v_0 \cdot \cos \vartheta_0} = \varrho_{\pi} \cdot \ln \frac{\operatorname{ig}\left(\frac{\pi}{4} + \frac{\vartheta_1}{2}\right)}{\operatorname{tg}\left(\frac{\pi}{4} + \frac{\vartheta_0}{2}\right)}.$$

Damit ist also, da ϑ_1 durch Δz festgelegt war, der Endwert v_1 der Geschwindigkeit bekannt. Aus den bekannten Differentialgleichungen leitet man ohne Schwierigkeit für die übrigen Elemente die Näherungsgleichungen ab:

(181)
$$\begin{aligned}
\Delta x &= - (v_0 \cdot \cos \vartheta_0) \cdot (v_1 \cdot \cos \vartheta_1) \cdot A_x; \\
\Delta y &= - (v_0 \cdot \cos \vartheta_0) \cdot (v_1 \cdot \cos \vartheta_1) \cdot A_y; \\
\Delta t &= - \sqrt{(v_0 \cdot \cos \vartheta_0) \cdot (v_1 \cdot \cos \vartheta_1)} \cdot A_x; \\
A_x &= \Delta \left(\frac{\operatorname{tg} \vartheta}{g}\right) = - \frac{\operatorname{tg} \vartheta_1 - \operatorname{tg} \vartheta_0}{g}; \\
A_y &= \Delta \left(\frac{\operatorname{tg}^2 \vartheta}{2g}\right) = \frac{\operatorname{tg}^2 \vartheta_1 - \operatorname{tg}^2 \vartheta_0}{2g}.
\end{aligned}$$

Die nunmehr erhaltenen Elemente lassen sich noch verbessern;

166

entwickelt man nämlich den Hodographen in eine Taylorreihe, so folgt

$$\ln (v_1 \cdot \cos \vartheta_1) - \ln (v_0 \cdot \cos \vartheta_0)$$

= $\varrho_0 \cdot \varDelta z + \left(\frac{d\varrho}{dz}\right)_0 \cdot \frac{(\varDelta z)^2}{2} + \left(\frac{d^2 \varrho}{dz^2}\right)_0 \cdot \frac{(\varDelta z)^3}{6} + \cdots \text{Restglied},$

d. h.

$$\ln \frac{v_1 \cdot \cos \theta_1}{v_0 \cdot \cos \theta_0} = \varrho_i \cdot \varDelta z,$$

wo $\varrho_i = \varrho_0 + \frac{1}{2} \varrho'_0 \cdot \varDelta z + \frac{\varrho_0''}{3!} \cdot (\varDelta z)^2 + \cdots$

 \mathbf{somit}

$$\varrho_i - \left(\varrho_0 + \frac{\varDelta \, \varrho}{2} \right) \approx \frac{\varrho_0''}{3!} \cdot (\varDelta \, z)^2.$$

;

Andererseits ist nun für den Hodographen

$$\delta \varrho = \varrho_1 - \varrho_0 \approx \varrho_0' \cdot \varDelta z + \frac{\varrho_0''}{2} \cdot (\varDelta z)^2 + \cdots$$

Näherungsweise ist bei Vernachlässigung höherer Glieder

(180a)
$$\varepsilon = \frac{\varrho_0''}{2} \cdot (\varDelta z)^2 = \delta \varrho - \varDelta \varrho$$
, d. h. also $\varrho_i = \varrho_0 + \frac{\varDelta \varrho}{2} + \frac{\varepsilon}{3}$.

Nachdem man also zunächst ϱ_0 und $\Delta \varrho$, d. h. ϱ_m , dann v_1 aus (180) und schließlich y_1 aus (181) bestimmt hat, ergibt sich ein genaueres ϱ_1 ; man kennt dann $\delta \varrho = \varrho_1 - \varrho_0$ und damit ε , d. h. die an $\ln(v_1 \cdot \cos \vartheta_1)$ anzubringende Korrektur $\left(\Delta z \cdot \frac{\varepsilon}{3}\right)$. Ähnlich lassen sich auch für Δx , Δy , Δt solche Korrekturwerte berechnen, die von ε und Δz , bzw. z_0 und z_1 abhängen. Alle in diesem Verfahren vorkommenden allgemeinen Ausdrücke sind tabuliert, so daß die ganze Rechnung neben der Anwendung dieser Tabellen auf den bloßen Gebrauch einer Logarithmentafel abgestellt ist. — Der Leser wird leicht erkennen, daß das beschriebene Verfahren auch auf den Fall veränderlicher Temperatur ausgedehnt werden kann.

3. Eine in Amerika⁽¹³⁾⁽²⁵⁾ entwickelte Methode geht von den Bewegungsgleichungen (43; 44) aus, die wir für den Fall der soeben betrachteten Everlingschen Luftverteilung schreiben können:

(182)
$$\begin{cases} \frac{du}{dt} = -R \cdot u; & \text{wo} \quad u = \dot{x} = v \cdot \cos \vartheta; \quad w = \dot{y} = w \cdot \sin \vartheta; \\ \frac{dw}{dt} = -g - R \cdot w; & R = c^* \cdot e^{-k \cdot y} \cdot \frac{f(v)}{v}. \end{cases}$$

Hierin kann R in eine Taylorreihe entwickelt werden:

 $R = R_0 + a_1 \cdot t + a_2 \cdot t^2 + \cdots, \quad \text{wo} \quad a_1 = \left(\frac{d R}{dt}\right)_0, \text{ usw.}$ (Dafür setzt man auch zuweilen $R = \frac{R_0}{1 + b \cdot \varDelta t}; \quad \varDelta t = t_1 - t_0.$)

In der ersten Berechnung werden alle $a_{\nu} = 0$ gesetzt. Dann erhält man die Formeln (78) im § 6 b. Mit den Endelementen des Teilbogens in t_1 kann man somit R_1 und daraus

$$a_1 \approx \frac{R_1 - R_0}{\Delta t}$$
 bzw. $b = \frac{1}{\Delta t} \cdot \frac{R_0 - R_1}{R_1}$

bestimmen. Mit diesen verbesserten Koeffizienten R(t) wird die Rechnung so lange wiederholt, bis keine Änderung der Endelemente mehr erfolgt.

Man erkennt, daß die kleine Änderung $\delta a_1 = \frac{\delta R}{t}$ die Verbesserungen

$$\frac{\delta u}{u} = \frac{\delta w}{w} = \frac{\delta x}{x} = -\frac{1}{2} \cdot t \cdot \delta R; \quad \delta y = \frac{w_0}{u_0} \cdot \delta x$$

nach sich zieht.

Nachdem auf diese Weise die ersten Teilbögen berechnet sind, kann man die einzelnen Elemente durch Extrapolation über die höheren Differenzen recht genau im voraus abschätzen. Die Berechnung des Bogens dient dann zur Kontrolle und Verbesserung der geschätzten Werte. Selbstverständlich läßt sich auch das amerikanische Verfahren auf den Fall veränderlicher Temperatur ausdehnen.

4. Es gibt noch eine ganze Reihe weiterer Methoden, die für die Teilbogenberechnung bekannt geworden sind. So ließen sich z. B. die Tabellen von Otto für das quadratische Widerstandsgesetz, ferner die Tafeln von Basforth für das kubische Widerstandsgesetz usw. nutzbar machen. Wir können auf die in großer Anzahl vorhandenen Vorschläge nicht näher eingehen.

§ 17. Zusammenfassende Übersicht der Integrationsmethoden für die ballistischen Bewegungsgleichungen

1. Mit $v = e^{u}$, $\sin \vartheta = \tau$ lautet die Hodographengleichung

$$\frac{d\tau}{du} = \frac{1-\tau^2}{\tau+\varrho(u)}$$

Für jede Lösung $\tau = \varphi(u)$ wird

$$\frac{c^*}{g} \cdot f(v) = \varrho(u) = \frac{1 - \varphi^2(u)}{\varphi'(u)} - \varphi(u).$$

Wird zur Abkürzung $A(u, \tau) = \frac{1-\tau^2}{\tau + \varrho(u)}$ gesetzt, so ist die Hodographengleichung der partiellen Differentialgleichung

$$A(u,\tau)\cdot\frac{\partial z}{\partial \tau}+\frac{\partial z}{\partial u}=0$$

gleichwertig; jede Lösung $z(u,\tau)$ stellt eine Fläche dar, auf der jede Flächenkurve $\tau = \varphi(u)$, die $z \equiv \text{const.}$ zur Folge hat, eine Lösung der Hodographengleichung ist. Alle Lösungen $z(u,\tau)$ der partiellen Differentialgleichung, für die einer der Ausdrücke

$$z; \quad \frac{\partial z}{\partial \tau}; \quad \left(\frac{\partial z}{\partial \tau}\right)^n; \quad \frac{\partial}{\partial \tau} \left[\ln\left(\frac{\partial z}{\partial \tau}\right)\right]$$

rational in τ wird, führen die Integration der Hodographengleichung auf Quadraturen zurück (Drach).

2. Die Potenzgesetze gestatten, den Hodographen in geschlossener Form, die übrigen Flugbahnelemente durch Quadraturen darzustellen. Man erhält

$$v^{n} = \frac{\sec^{n}\vartheta}{\frac{n\cdot c_{n}}{g}\cdot [C-\xi_{n}(\vartheta)]}; \quad -g\cdot x = \int_{\varphi}^{\varphi} \frac{d(\operatorname{tg}\vartheta)}{\left[\frac{n\cdot c_{n}}{g}\cdot (C-\xi_{n})\right]^{\frac{p}{n}}};$$
$$-g\cdot y = \int_{\varphi}^{\varphi} \frac{\operatorname{tg}\vartheta\cdot d(\operatorname{tg}\vartheta)}{\left[\frac{n\cdot c_{n}}{g}\cdot (C-\xi_{n})\right]^{\frac{p}{n}}}; \quad -g\cdot t = \int_{\varphi}^{\varphi} \frac{d(\operatorname{tg}\vartheta)}{\left[\frac{n\cdot c_{n}}{g}\cdot (C-\xi_{n})\right]^{\frac{1}{n}}};$$

dabei ist: $\xi_n(\vartheta) = \int \frac{d\vartheta}{\cos^{n+1}\vartheta}$; $C = \frac{g}{n \cdot c_n \cdot (v_0 \cdot \cos \varphi_n)} + \xi_n(\varphi)$.

Besondere Bedeutung haben diese Formeln für n = 2 (Otto-Tabellen) und n = 3 (Tafeln von Bashforth) erreicht. Weiterhin sind diese Formeln für die Zonenpotenzgesetze wichtig, die mit von Zone zu Zone der Geschwindigkeit wechselnden Exponenten $n [c \cdot f(v) = c \cdot m \cdot v^n]$ benutzt werden. — Für n = 1 ergeben sich die geschlossenen Gleichungen des linearen Widerstandsgesetzes.

3. Bei Berücksichtigung der Luftgewichtsabnahme mit der Höhe ist die Zurückführung der Integration auf Quadraturen im allgemeinen nicht möglich. Die Lösung ist durch Quadraturen darstellbar, wenn die Widerstandsverzögerung die Form

$$c_1 \cdot e^{-k \cdot y} \cdot v$$
 oder $c_2 \cdot (1 + k \cdot y) \cdot v^2$

annimmt. Im ersten Falle ergibt sich die lineare Differentialgleichung

$$\frac{d(e^{k \cdot y})}{dt} = e^{k \cdot y} \cdot (k \cdot v_0 \cdot \sin \varphi - c_1 - k \cdot g \cdot t) + c_1,$$

deren Integral sofort angegeben werden kann. Die übrigen Elemente sind dann ebenfalls durch Quadraturen darstellbar. — Im zweiten Falle ergeben sich die linearen Differentialgleichungen

$$\frac{d\xi}{d\vartheta} = -3\xi \cdot \operatorname{tg}\vartheta + \frac{2c_2 + k \cdot \sin\vartheta}{k}; \quad \frac{dv}{d\vartheta} = v \cdot \left(\operatorname{tg}\vartheta - \frac{c_2}{k \cdot \xi}\right),$$

wobei $\xi = \eta \cdot \sin\vartheta; \quad \eta = \frac{1 + k \cdot y}{k \cdot \frac{dy}{d\vartheta}},$

die nacheinander durch Quadraturen zu lösen sind.

4. Im Falle eines allgemeinen Widerstandsgesetzes von der Form $c^* \cdot f(v)$ mit konstanter Temperatur und konstantem Luftgewicht erhält man verhältnismäßig einfache Lösungen durch Integration angenäherter Differentialgleichungen. Es läßt sich eine verallgemeinerte Hodographengleichung

$$\frac{d\xi}{dw} = \frac{g}{c^*} \cdot \frac{a + \lambda^2 \cdot [\psi(\vartheta) - a]}{F\left[\frac{w}{b + \lambda^2} \cdot \frac{w}{\{\chi(\vartheta) - b\}}\right]}; \quad \xi = \int \psi(\vartheta) \cdot d\vartheta; \quad w = v \cdot \cos\vartheta$$

angeben, die für $\lambda^2 = 1$ in die Hodographengleichung übergeht. Die Lösung dieser verallgemeinerten Gleichung läßt sich nach Potenzen von λ^2 entwickeln. Durch Verwendung nur weniger Glieder dieser Reihe und geeignete Wahl der Konstanten *a* und *b* ergeben sich angenäherte Lösungen des Hodographen; z. B. die Lösung Siacci III: Es werden die Abkürzungen

$$c^* = rac{1}{c' \cdot eta} \ (eta = ext{Ausgleichsfaktor}); \quad u = rac{v \cdot \cos artheta}{\cos arphi};$$

§ 17. Zusammenfassende Übersicht der Integrationsmethoden 171

$$J(u) = -2g \cdot \int \frac{du}{u \cdot f(u)}; \qquad D(u) = -\int \frac{u \cdot du}{f(u)};$$
$$T(u) = -\int \frac{du}{f(u)}; \qquad A(u) = -\int \frac{J(u) \cdot u \cdot du}{f(u)}$$

eingeführt; die Lösung lautet dann

$$\begin{split} \operatorname{tg} \vartheta &= \operatorname{tg} \varphi - \frac{c'}{2\cos^2 \varphi} \cdot [J(u) - J(v_0)]; \quad x = c' \cdot [D(u) - D(v_0)]; \\ y &= x \cdot \operatorname{tg} \varphi - \frac{c' \cdot x}{2\cos^2 \varphi} \cdot \left\{ \frac{A(u) - A(v_0)}{D(u) - D(v_0)} - J(v_0) \right\}; \\ t &= \frac{c'}{\cos \varphi} \cdot [T(u) - T(v_0)]. \end{split}$$

Die primären Funktionen J(u) usw. sind von Siacci berechnet und tabuliert worden. Darauf beruhen die für praktische Rechnungen geeigneten Fasella-Tafeln. Für β ist eine Tabelle mit den Eingängen X (Schußweite) und φ (Erhöhung) vorhanden. Auf andere Weise, durch vorläufige Rechnung mit $\beta = 1$ und Verwendung der vorläufigen Ergebnisse, ist die β -Bestimmung von Vallier durchgeführt; en gilt danach

$$\beta \cdot \left[\frac{6f(v_0)}{v_0^4} + \frac{5f(u_s)}{u_s^4}\right] \cdot \frac{1}{\cos^2 \varphi} = \frac{6f(v_0)}{v_0^4} \cdot \frac{1}{\cos^3 \varphi} + \frac{5f(v_s)}{v_s^4} \cdot (1 - 0,00011 \cdot y_s)$$

Charbonnier erhält

 $\beta = 1 + \frac{n-1}{4} \cdot \varphi^2$ für den aufsteigenden Ast und $\beta = 1 + \frac{n-1}{4} \cdot \omega^2$ für den absteigenden Ast der Flugbahn.

In den allgemeinen Fall lassen sich auch die Formeln von Popoff $[\xi = tg(n \cdot \vartheta) \text{ oder } \xi = \sin(n \cdot \vartheta)]$ und eine verschärfte Lösung von Charbonnier einordnen.

5. Cavalli hat gezeigt, daß bei Berücksichtigung exponentiell abnehmender Luftdichte (Everlingsche Formel) die angenäherte Hauptgleichung

$$\frac{d^{2}\xi}{dJ^{2}} + [x \cdot u^{2} \cdot (1 + \xi^{2}) + n(u) - 1] \cdot \frac{\xi}{1 + \xi^{2}} \cdot \left(\frac{d\xi}{dJ}\right)^{2} = 0$$

gilt, wo

$$\xi = \operatorname{tg} \vartheta; \quad J = -2 g \cdot \int \frac{du}{u \cdot f(u)}; \quad \varkappa = \frac{k \cdot \cos^2 \varphi}{g}; \quad u = \frac{\vartheta \cdot \cos \vartheta}{\cos \varphi}.$$

6. Die Entwicklung der Lösung in Potenzreihen von z ergibt

$$y = x \cdot \operatorname{tg} \varphi - \frac{g}{2} \cdot \left(\frac{x}{v_0 \cdot \cos \varphi}\right)^3 - \frac{g}{3} \cdot c \cdot \delta_0 \cdot \frac{f(v_0)}{v_0} \cdot \left(\frac{x}{v_0 \cdot \cos \varphi}\right)^3 - \frac{g}{12} \cdot \left[3\left(\frac{c \cdot \delta_0 \cdot f(v_0)}{v_0}\right)^2 - \left(\frac{c \cdot \delta_0 \cdot f(v_0)}{v_0}\right)' \cdot \left\{c \cdot \delta_0 \cdot f(v_0) + g \cdot \sin \varphi\right\}\right] \left(\frac{x}{v_0 \cdot \cos \varphi}\right)^4 + \cdots;$$

$$t = \frac{x}{v_0 \cdot \cos \varphi} \cdot \left[1 + \frac{c \cdot \delta_0 \cdot f(v_0)}{2 v_0} \cdot \frac{x}{v_0 \cdot \cos \varphi} + \frac{1}{3} \left\{\left(\frac{c \cdot \delta_0 \cdot f(v_0)}{v_0}\right)^2 - \frac{1}{2} \left(\frac{c \cdot \delta_0 \cdot f(v_0)}{v_0}\right)' \cdot \left[c \cdot \delta_0 \cdot f(v_0) + g \cdot \sin \varphi\right]\right\} \cdot \left(\frac{x}{v_0 \cdot \cos \varphi}\right)^3 + \cdots \right].$$

Für y = 0 und Reihenumkehrung erhält man für die Schußweite:

$$X = \frac{v_0^2 \cdot \sin 2\varphi}{g} \cdot \left\{ 1 - \frac{4}{3} \cdot \frac{c \cdot \delta_0 \cdot f(v_0)}{g} \cdot \sin \varphi + \frac{8}{9} \cdot \frac{c \cdot \delta_0 \cdot f(v_0)}{g} \right\}$$
$$\cdot \left| \frac{c \cdot \delta_0 \cdot f(v_0)}{g} + \frac{3}{4} \cdot \frac{v_0}{g} \cdot (c \cdot \delta_0 \cdot f(v_0))' \right| \cdot \sin^2 \varphi + \cdots \right\}.$$

a) Bricht man die Potenzreihe für y nach dem 3. Gliede ab, entstehen die Näherungsformeln von Piton-Bressant

$$y = x \cdot \operatorname{tg} \varphi - \frac{g \cdot x^2}{2 v_0^2 \cdot \cos^2 \varphi} \cdot (1 + K \cdot x);$$

$$t = \frac{2}{9 v_0 \cdot \cos \varphi} \cdot \frac{\sqrt{(1 + 3K \cdot x)^3} - 1}{K};$$

$$\operatorname{tg} \vartheta = \operatorname{tg} \varphi - \frac{g \cdot x}{2 v_0^2 \cdot \cos^2 \varphi} \cdot (2 + 3K \cdot x);$$

$$v \cdot \cos \vartheta = v_0 \cdot \cos \varphi \cdot (1 + 3K \cdot x)^{-\frac{1}{2}}.$$

Für die Mündungswaagerechte gelten die Formeln

$$\begin{split} X &= \frac{Z-1}{K} = \frac{X_{\text{vac}}}{Z}; \quad \text{tg}\omega = \text{tg}\varphi \cdot f_1(Z); \\ v_{\theta} \cdot \cos\omega &= v_0 \cdot \cos\varphi \cdot f_2(Z); \quad T = \frac{X}{v_0 \cdot \cos\varphi} \cdot f_3(Z); \\ f_1(Z) &= 2 - Z^{-1}; \quad f_2(Z) = (3Z-2)^{-\frac{1}{2}}; \\ f_3(Z) &= \frac{2}{9} \left| (3Z-2)^{\frac{3}{2}} - 1 \right| \cdot (Z-1)^{-1}. \end{split}$$

Die Funktionen $f_1(Z)$, $f_2(Z)$, $f_3(Z)$ werden zweckmäßig tabuliert.

b) Wird der Reihenrest der Potenzreihe für y als nur von x abhängig betrachtet, entstehen die Formeln des "Aide-Mémoire"

$$y = x \cdot \left(\operatorname{tg} \varphi - \frac{\cos^2 \varphi_x \cdot \operatorname{tg} \varphi_x}{\cos^2 \varphi} \right); \quad \operatorname{tg} \vartheta = \frac{y}{x} - \frac{\operatorname{tg} \omega_x \cdot \cos^2 \varphi_x}{\cos^2 \varphi}; \\ v \cdot \cos \vartheta = v_{ex} \cdot \cos \omega_x \cdot \frac{\cos \varphi}{\cos \varphi_x}; \quad t = t_x \cdot \frac{\cos \varphi_x}{\cos \varphi}.$$

c) Eine der Didion-Bernoullischen Näherungslösung für die Potenzgesetze ähnliche Entwicklung entsteht durch die Forderung, daß die Potenzreihe für $\left|\frac{x \cdot tg\varphi - y}{g} \cdot v_0^2 \cdot \cos^2\varphi\right|$ möglichst genau übereinstimmen soll mit dem Ausdruck

$$B(z) = B(a \cdot x) = \frac{(1 + a \cdot x)^{\nu} - \nu \cdot a \cdot x - 1}{\nu \cdot (\nu - 1) \cdot a^2}$$

Die Lösung lautet dann

$$\begin{aligned} \nu &= 2 \cdot \frac{A+n-1}{A+n-2}; \quad A = \frac{(n-1) \cdot g \cdot \sin \varphi}{c_n \cdot v_0^n}; \\ a &= c_n \cdot (v_0 \cdot \cos \varphi)^{n-2} \cdot \frac{A+n-2}{\cos^{n-1}\varphi}; \quad z = a \cdot x; \\ y &= x \cdot \operatorname{tg} \varphi - \frac{g \cdot x^2}{2 \, v_0^2 \cdot \cos^2 \varphi} \cdot B(z); \quad t = \frac{x}{v_0 \cdot \cos \varphi} \cdot D(z); \\ \operatorname{tg} \vartheta &= \operatorname{tg} \varphi - \frac{g \cdot x}{v_0^2 \cdot \cos^2 \varphi} \cdot J(z); \quad v \cdot \cos \vartheta = \frac{v_0 \cdot \cos \varphi}{V(z)}; \\ D(z) &= \frac{(1+z)^{\frac{\nu}{2}}-1}{\frac{\nu}{2} \cdot z}; \quad J(z) = \frac{(1+z)^{\nu-1}-1}{(\nu-1) \cdot z}; \\ V(z) &= (1+z)^{\frac{\nu}{2}-1}. \end{aligned}$$

7. Führt man das schiefwinklige Koordinatensystem (ξ, η) ein, so lauten die Differentialgleichungen der Bewegung, wenn

$$\begin{split} \xi &= x \cdot \sec \varphi; \quad \eta = x \cdot \operatorname{tg} \varphi - y; \\ \vdots \xi &= -c^* \cdot \dot{\xi} \cdot G(v); \quad \dot{\eta} = g - c^* \cdot \dot{\eta} \cdot G(v); \\ v^2 &= (\dot{\xi} + \dot{\eta})^2 \cdot \left[1 - \frac{4 \, \dot{\xi} \cdot \dot{\eta}}{(\dot{\xi} + \dot{\eta})^2} \cdot \lambda \right], \end{split}$$

wo $\lambda = \frac{1 + \sin \varphi}{2} = \sin^2 \left(\frac{\pi}{4} + \frac{\varphi}{2}\right)$. Die Lösung läßt sich nach Potenzen von λ entwickeln. Bricht man die Reihen nach dem 2. Gliede ab, so ergeben sich die Interpolationsgleichungen

$$\xi(\lambda, t) = \xi_0(t) + \lambda \cdot \xi_1(t); \quad \eta(\lambda, t) = \eta_0(t) + \lambda \cdot \eta_1(t).$$

Aus 2 genau berechneten Bahnen einer Schar lassen sich damit beliebige Bahnen interpolieren. Der Interpolationsfehler wird

$$\Delta \psi = -(\lambda - \lambda_1) \cdot (\lambda - \lambda_2) \cdot \varrho_{\psi}, \quad (\psi = \xi \text{ oder } \eta),$$

wenn ϱ_{Ψ} den Reihenrest bedeutet. Soll im Intervall (λ_0, λ_e) interpoliert werden, geht man zweckmäßig von den Ausgangsbahnen (λ_1, λ_2) aus, die sich durch die Gleichungen

$$\lambda_1 = \frac{\sqrt{2}-1}{2\sqrt{2}} \cdot \lambda_e + \frac{\sqrt{2}+1}{2\sqrt{2}} \cdot \lambda_0; \quad \lambda_2 = \frac{\sqrt{2}+1}{2\sqrt{2}} \cdot \lambda_e + \frac{\sqrt{2}-1}{2\sqrt{2}} \cdot \lambda_0$$

bestimmen. Die Funktionen ξ_0, ξ_1, \ldots sind vom Abgangswinkel unabhängig.

8. Das Teilbogenverfahren ermittelt die Lösung durch Annäherung bestimmter Funktionen durch konstante Mittelwerte auf kleinen Teilen der Bahn.

a) So kann die Funktion J(u) von Siacci herangezogen werden, wenn

$$A = \frac{1}{0,4343} \cdot \frac{2 g_s - \frac{A}{T_0} \cdot \frac{g_s}{g} \cdot w^2}{f_s(w)}; \quad B = 2 c \cdot \frac{\delta_0}{g} \cdot g_s \cdot h(w) \cdot e^{-a \cdot \eta}; \quad \left(a = \frac{1}{R \cdot T_0}\right)$$

durch konstante Mittelwerte ersetzt werden. Dabei sind g_s und $f_s(w)$ die von Siacci verwendeten Größen und $d\eta = \frac{T_0 \cdot dy}{T_0 - A \cdot y}$. Dann gilt für einen Teilbogen $\Delta z = z_1 - z_0$:

$$\begin{split} w_1 &= \arg \left\{ J\left(w_1\right) \right\} = \arg \left\{ J\left(w_0\right) + A_m \cdot \log \frac{\mathfrak{Coj} \, z_0}{\mathfrak{Coj} \, z_1} - B_m \cdot \varDelta \, z \right\};\\ \eta_1 &= \eta_0 - \frac{w_0 \cdot w_1}{g} \cdot \sqrt{\mathfrak{Tang} \, z_0 \cdot \mathfrak{Tang} \, z_1} \cdot \varDelta \, z. \end{split}$$

b) Setzt man bogenweise $\frac{c^*}{g} \cdot e^{-k \cdot y} \cdot f(v) = \varrho_m = \text{const.}$, so entstehen die Formeln der Methode G.H.M.:

$$\ln \frac{v_1 \cdot \cos \vartheta_1}{v_0 \cdot \cos \vartheta_0} = \varrho_m \cdot \ln \frac{\operatorname{tg}\left(\frac{\pi}{4} + \frac{\vartheta_1}{2}\right)}{\operatorname{tg}\left(\frac{\pi}{4} + \frac{\vartheta_0}{2}\right)};$$

$$\Delta x = -\left(v_0 \cdot \cos \vartheta_0\right) \cdot \left(v_1 \cdot \cos \vartheta_1\right) \cdot \Delta\left(\frac{\operatorname{tg}\vartheta}{g}\right);$$

$$\Delta y = -\left(v_0 \cdot \cos \vartheta_0\right) \cdot \left(v_1 \cdot \cos \vartheta_1\right) \cdot \Delta\left(\frac{\operatorname{tg}\vartheta}{2g}\right);$$

$$\Delta t = -\left(\overline{v_0 \cdot \cos \vartheta_0}\right) \cdot \left(v_1 \cdot \cos \vartheta_1\right) \cdot \Delta\left(\frac{\operatorname{tg}\vartheta}{2g}\right);$$

An diesen einfach zu berechnenden Ausdrücken müssen noch gewisse Korrekturen angebracht werden.

Kap. V. Graphische, numerische und mechanische Lösung der außenballistischen Gleichungen

§18. Graphische Methoden

Der im vorangehenden beschriebenen Teilbogenmethode ist im grundsätzlichen Aufbau die graphische Integration der ballistischen Differentialgleichungen ähnlich. Es gibt eine Reihe von Verfahren, von denen der eine Teil schnell zum Ziele führen soll, also schon von vornherein mit verhältnismäßig groben Näherungen behaftet ist, während andere wiederum, mit entsprechend größerem Arbeitsaufwand natürlich, sehr genaue Ergebnisse liefern. Alle aber beruhen darauf, in den Reihenentwicklungen für die Elemente der Flugbahn eine mehr oder weniger große Anzahl der Reihenglieder durch die zeichnerische Darstellung zu erfassen. Wir wollen einige Methoden herausgreifen: Die eine gibt eine Näherungslösung des Problems (Verfahren von Vahlen⁽⁴⁾); die andere gestattet, durch aufeinanderfolgende Wiederholung des Verfahrens und Verbesserung die Lösung mit größter Genauigkeit zu erhalten, wobei die Genauigkeit allerdings durch die Zeichenfehler und die Zeichengenauigkeit begrenzt wird.

a) Das Verfahren von Vahlen

Ein sehr einfaches Verfahren ist von Th. Vahlen⁽⁴⁾ entwickelt worden. Die Flugbahn wird ohne Integration durch Aneinanderreihung kleiner Tangentenstücke konstruiert. Sei in Abb. 19 die

Abb. 19. Flugbahnkonstruktion nach Vahlen

konstruiert. Sei in Abb. 19 die Strecke $P_0 Q_0$ nach Größe und Richtung gleich der Geschwindigkeit v_0 in P_0 . Von Q_0 aus werde die Verzögerung durch den Luftwiderstand bis R abgetragen; in R greift die Schwerkraft g an, die senkrecht nach unten gerichtet ist und in Abb. 19 durch RS dargestellt ist. Dann ist $P_0 S = v_1$ die Geschwindigkeit, des Geschosses nach Ablauf der betreffenden

Sekunde. Die mittlere Geschwindigkeit in diesem Zeitintervall ist gegeben durch $P_0 P_1$, wo P_1 der Mittelpunkt der Verbindungsstrecke SQ_0 ist. Trägt man nun in P_1 die Strecke P_0S nach Größe und Richtung an, so läßt sich die Konstruktion wiederholen. Man zeigt leicht, daß diese Konstruktion die Taylorentwicklung intervallweise bis zum 2. Gliede annähert: Vektoriell geschrieben hat man

(183a)
$$\Delta \mathbf{r} = \dot{\mathbf{r}} \cdot \Delta t + \frac{1}{2} \ddot{\mathbf{r}} \cdot (\Delta t)^2 + \cdots,$$

wordie Komponenten (x, y), $\dot{\mathbf{r}}$ die Komponenten $(v \cdot \cos \vartheta, v \cdot \sin \vartheta)$ und $\ddot{\mathbf{r}}$ die Komponenten $[-c \cdot \delta \cdot f(v) \cdot \cos \vartheta, -g - c \cdot \delta \cdot f(v) \cdot \sin \vartheta]$ hat usw. Weiter gilt

(183b)
$$\Delta \dot{\mathfrak{r}} = -(\mathfrak{w} + \mathfrak{g}) \cdot \Delta t + \cdots$$

wo \mathfrak{w} und \mathfrak{g} die Vektoren der Verzögerung durch den Luftwiderstand bzw. der Schwerebeschleunigung bedeuten. Bricht man die Reihe für $\Delta \mathfrak{r}$ nach dem 2. Gliede ab, so folgt mit $\mathfrak{\ddot{r}} \cdot (\Delta t)^2 \sim \Delta \mathfrak{\dot{r}} \cdot \Delta t$:

$$\Delta \mathbf{r} \approx (\dot{\mathbf{r}} + \frac{1}{2}\Delta \dot{\mathbf{r}}) \cdot \Delta t.$$

Wendet man diese Vektorgleichungen auf die Konstruktion (Abb. 19) an, so ist für $\Delta t = 1$: $\dot{\mathbf{t}} = P_0 Q_0$; $\dot{\mathbf{t}} + \Delta \dot{\mathbf{t}} = P_0 S$, d. h. also $P_0 P_1 = \dot{\mathbf{t}} + \frac{1}{2} \Delta \dot{\mathbf{t}}$.

b) Graphisches Integrationsverfahren von Cranz und Rothe

Die Integration der ballistischen Differentialgleichungen kann, wie Cranz⁽¹⁾ und Rothe⁽⁵⁵⁾ gezeigt haben, auf graphischem Wege ausgeführt werden. Man muß sich das Verfahren so vorstellen, daß zunächst eine Näherungslösung graphisch ermittelt wird, die durch Wiederholung der Konstruktion zu einer verbesserten Näherungslösung führt usw. Dieses Verfahren ergibt theoretisch erst nach unendlich vielen Wiederholungen die genaue Lösung; praktisch dagegen ist sie meist schon nach wenigen Schritten genau genug, wenn das Gebiet der ersten Näherung nicht allzu groß gewählt wird. Bevor wir jedoch näher auf diese Zusammenhänge eingehen, wollen wir das Verfahren schildern.

Wir verwenden die außenballistischen Differentialgleichungen (46), III. Form, und schreiben sie in der Gestalt

(184)
$$\begin{cases} \frac{du}{dz} = \mathfrak{T} \operatorname{ang} z + F(y, u); & \frac{dy}{dz} = -\frac{e^{2u}}{g} \cdot \mathfrak{T} \operatorname{ang} z; \\ \text{wo} \quad F(y, u) = \frac{c}{g} \cdot \delta(y) \cdot e^{2u} \cdot K\left(e^{u} \cdot \sqrt{\frac{T_{n}}{T(y)}}\right). \end{cases}$$

Die Anfangswerte für die Lösung dieses Systems sind

$$z_0 = \ln \operatorname{tg}\left(\frac{\pi}{4} + \frac{\varphi}{2}\right), \quad u_0 = \ln v_0, \quad y_0 = 0.$$

In zwei Koordinatensystemen (z, u), (z, y) mit gemeinsamer z-Achse kann man also zunächst die Richtungen der Anfangstangenten in den Punkten (z_0, u_0) und (z_0, y_0) , (Abb. 20), einzeichnen.

Abb. 20. Graphische Lösung der Bewegungsgleichungen Athen, Ballistik

Der Schnitt dieser beiden Geraden mit der Senkrechten durch z_1 gibt die Näherungslösung in den Punkten (z_1, u_1) bzw. (z_1, y_1) ; setzt man also diese Werte in (184) ein, so ergeben sich die neuen Tangentenrichtungen tg α_1 und tg β_1 ; diese neuen Tangenten tragen wir nun in den Halbierungspunkten der Anfangstangenten zwischen den Senkrechten z_0 und z_1 an und erhalten mit z_1 die Schnittpunkte P_1 und Q_1 . Man erhält durch Fortsetzung der Konstruktion so zunächst eine Reihe von Punkten P_0 , P_1 , P_2, \ldots bzw. Q_0, Q_1, Q_2, \ldots , die je ein kurzes Stück der 1. Näherungslösung darstellen. Nachdem somit ein kurzer Teil der Lösung angenähert bekannt ist, liest man in den Punkten $P_0, P_1, P_2, \ldots, Q_0, Q_1, Q_2, \ldots$ die Werte (z, u, y) ab, trägt sie in (184) ein und kann somit die Kurven $\left(z, \frac{du}{dz}\right)$ bzw. $\left(z, \frac{dy}{dz}\right)$ wiederum über gemeinsamer z-Achse zeichnen. Integriert man diese graphisch, so entstehen verbesserte Lösungen für y und u. Aus den Integralkurven, auf deren Gewinnung wir gleich eingehen, liest man wiederum die Werte (u, y, z) ab, trägt sie abermals in (184) ein und kann die verbesserten Kurven $\left(z, \frac{du}{dz}\right)$, $\left(z, \frac{dy}{dz}\right)$ erneut zeichnen und graphisch integrieren; mit dieser abermals verbesserten Lösung wird das geschilderte Verfahren so oft wiederholt, bis im Rahmen der gewünschten Genauigkeit keine Änderung der Lösung mehr eintritt. — Wir haben nunmehr ein kurzes Stück der Lösung ermittelt. Der Fortgang der Integration vollzieht sich nun so, daß man die Integralkurve nach Augenmaß um ein Stück verlängert und dieses als 1. Näherungslösung für das nunmehr zu bestimmende Stück der Lösung betrachtet. Die beschriebenen Konstruktionen führen dann auch hierfür zur genauen Lösung. So fährt man fort, bis (y, u, z) in dem gewünschten Gebiet bestimmt sind. x und t finden sich durch einfache graphische Quadraturen der Differentialgleichungen

$$\frac{dx}{dz} = -\frac{e^{2u}}{g} \cdot \frac{1}{\operatorname{Coj} z}; \quad \frac{dt}{dz} = -\frac{e^{u}}{g},$$

wo ja u als Funktion von z bereits bekannt ist. ---

Wir betrachten nun noch die graphische Quadratur^{(33)(34)*}: Be-

^{*} Diese beiden Literaturangaben zur angewandten Mathematik sind eine

kanntlich ist das Integral einer Konstanten a gegeben durch die Gerade

$$\int a \cdot dx = a \cdot x + b,$$

wo die Integrationskonstante b durch Vorgabe des Anfangspunktes A_0 bestimmt ist. Hat man nun eine beliebige Kurve y = f(x) zu integrieren (Abb. 21), so ersetze man sie zunächst

Abb. 21. Graphische Quadratur

durch eine Treppenkurve, die teils unterhalb, teils oberhalb von f(x) verläuft, aber so, daß die in Abb. 21 gleichartig schraffierten Flächenstücke inhaltsgleich werden. Die Waagerechten dieser Treppenkurve haben als Integral somit Geraden mit der durch die Ordinaten vorgegebenen Neigung a_y . Markiert man die Werte dieser Ordinaten auf der y-Achse und verbindet sie mit einem Punkt E, für den EO = 1 ist, so haben diese Verbindungslinien die Neigung a_y der Integralgeraden $(a_v \cdot x + b_y)$. Diese können also in der aus Abb. 21 ersichtlichen Weise, im Anfangspunkt A_0 beginnend, gezeichnet werden. Durch Aneinanderreihung dieser Geraden erhält man ein Tangentenpolygon der Integralkurve, in das diese leicht eingezeichnet werden kann.

Wir wollen uns nun noch ein Bild über die Konvergenz der aufeinanderfolgenden Näherungen machen. Vorgelegt sei die Differentialgleichung

$$\frac{dy}{dx} = f(x, y).$$

Auswahl aus einer großen Zahl von Werken auf diesem Gebiet; sie wurden angegeben, da sie in Zusammenstellungen die gebräuchlichen Methoden der angewandten Mathematik enthalten.

180 Kap. V. Graphische, numerische und mechanische Lösung

Das Integral lautet also

$$y = y_0 + \int_{x_0}^x f(x, y) \cdot dx.$$

Ersetzen wir unter dem Integral y in erster Näherung durch y_0 , so entsteht die 2. Näherung

$$y_1 = y_0 + \int_{x_0}^x f(x, y_0) \cdot dx$$

usw., d. h. schließlich für einen beliebigen Index n:

$$y_{n+1} = y_0 + \int_{x_0}^x f(x, y_n) \cdot dx.$$

Folglich ist die Abweichung von der genauen Lösung y gegeben durch

$$y - y_{n+1} = \int [f(x, y) - f(x, y_n)] \cdot dx.$$

Bezeichnen wir nun mit $\varepsilon_{n+1}, \varepsilon_n, \ldots$ die Abweichungen

$$y-y_{n+1}=\varepsilon_{n+1}; \quad y-y_n=\varepsilon_n; \quad \dots$$

und mit M das Maximum des Ausdruckes

$$\left|\frac{f(x, y) - f(x, y_n)}{y - y_n}\right|$$

für alle (x, y, y_n) im Intervall (x_0, x) , so ist nach dem Mittelwertsatz der Integralrechnung^(XII)

(185)
$$\begin{vmatrix} \varepsilon_{n+1} \leq M \cdot \varepsilon_n \cdot | x - x_0 | \leq M^2 \cdot \varepsilon_{n-1} | x - x_0 |^2 \\ \leq \cdots \leq M^n \cdot | x - x_0 |^n \cdot \varepsilon_1, \end{vmatrix}$$

d. h. wählt man das Integrationsintervall (x_0, x) klein genug, so wird $M \cdot |x - x_0| < 1$; für genügend großes n, d. h. für genügend oft wiederholte Integration wird also ε_{n+1} beliebig klein und konvergiert für $n \to \infty$ gegen die genaue Lösung. — Dieselben Betrachtungen lassen sich sinngemäß auf Systeme von Differentialgleichungen ausdehnen. — Man erkennt also, daß das oben geschilderte Verfahren die gewünschte Lösung mit beliebiger Genauigkeit ergibt, wenn man die Integration nur genügend oft wiederholt und die Teilintervalle der Lösungen nicht zu groß wählt.
§ 19. Numerische Integration der ballistischen Differentialgleichungen

Das im Vorangehenden beschriebene Verfahren der schrittweisen Näherungen läßt sich auch numerisch bequem durchführen, vor allem dann, wenn eine Rechenmaschine zur Verfügung steht. Bevor wir das entsprechende Verfahren schildern, zeigen wir eine Methode auf, die nach einem Vorschlag von Veithen⁽⁸⁵⁾ aus dem numerischen Integrationsverfahren von Runge-Kutta⁽³⁴⁾ entwickelt wurde.

a) Das Verfahren von Runge-Kutta

Ist das Gleichungssystem

(186) (a)
$$\frac{dw}{dz} = F(z, w, y)$$
 (b) $\frac{dy}{dz} = G(z, w, y)$

vorgelegt, so ergeben sich bei einem Zuwachs h bei z für w bzw. y die Zuwachse k bzw. l:

$$(187) \begin{cases} (a) \quad k = \frac{1}{6}k_1 + \frac{1}{3}(k_2 + k_3) \\ + \frac{1}{6}k_4, \\ wobei \\ k_1 = F(z, w, y) \cdot h; \\ k_2 = F(z + \frac{1}{2}h, \\ w + \frac{1}{2}k_1, y + \frac{1}{2}l_1) \cdot h; \\ k_3 = F(z + \frac{1}{2}h, \\ w + \frac{1}{2}k_2, y + \frac{1}{2}l_2) \cdot h; \\ k_4 = F(z + h, w + k_3, \\ y + l_3) \cdot h \end{cases}$$
(b)
$$l = \frac{1}{6}l_1 + \frac{1}{3}(l_2 + l_3) \\ + \frac{1}{6}l_4, \\ wobei \\ l_1 = G(z, w, y) \cdot h; \\ l_2 = G(z + \frac{1}{2}h, w + \frac{1}{2}k_1, \\ y + \frac{1}{2}l_1) \cdot h; \\ l_3 = G(z + \frac{1}{2}h, w + \frac{1}{2}k_2, \\ y + \frac{1}{2}l_2) \cdot h; \\ l_4 = G(z + h, w + k_3, \\ y + l_3) \cdot h. \end{cases}$$

Durch diese Formeln wird die Taylorreihe bis zu Gliedern 4. Ordnung wiedergegeben; Näheres lese man in der einschlägigen Literatur nach ^(33/34). In den ballistischen Anwendungen kann man irgendein beliebiges System der Differentialgleichungen [(43) bis

	- 0 0
Ergebnis	k = 271, l = 1434 h = 1434 h = 1434 h = 1434 h = 1434 h = 1398
12	$\begin{array}{c c} 2241 \\ 1157 \\ 1631 \\ 786 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
k,	418.31 178.27 292,18 267,1 4
a	28011.76 14466.76 20392.35 9827.29
<u>a</u> 6	86,735 65,393 77,639 56,920
F	5228,84 2228,3 4 3652.20 3339,25
$w \cdot f(w)$	$\begin{array}{c} 2117.52\\ 989.41\\ 1564.48\\ 1611,63\\ 1611,63\end{array}$
e-a . n	$\begin{array}{c} 1,00000\\ 0,87351\\ 0,93253\\ 0,82138\\ 0,82138\end{array}$
$1-\frac{w^2}{2g}\cdot \frac{A}{T_0}$	0.21847 0.55597 0.37409 0.66357
$w\cdot \operatorname{Tangz}$	322,958 221,228 262,656 172,651
m	850,00 640,85 760,86 557,82
N	0.40 0.36 0.36 0.32

(47)] heranziehen; als Beispiel nehmen wir das beim Teilbogenverfahren in (§16c) benutzte (174), dessen Ergebnisse auf diese Weise nachgeprüft werden können.

Beispiel. Daten wie in (§ 16 c), also $v_0 = 850 \text{ m/s}$; $z_0 = 0,40; z_1 = 0,32; \frac{c \cdot \delta_0}{g} = 2,436$. Das Rechenschema ist nebenstehend wiedergegeben. In den obigen Gleichungen ist somit

$$\begin{split} G(z, w, \eta) &= -\frac{w^2}{g} \cdot \mathfrak{Tang}z; \\ F(w, z, \eta) &= \\ w \cdot \mathfrak{Tang} z \cdot \left(1 - \frac{w^2}{2g} \cdot \frac{\Lambda}{T}\right) + \frac{c \cdot \delta_0}{g} \cdot e^{-a \cdot \eta} \cdot w \cdot f(w). \end{split}$$

Ein Vergleich dieses Ergebnisses mit demjenigen aus (§ 16c) zeigt folgendes: Die Annäherung in y ist von gleicher Genauigkeitsordnung; dagegen wird w_1 wesentlich schlechter wiedergegeben, eine Folge des zu großen Intervalls Δz . Jedenfalls erkennt man, daß bei größeren Δz -Schritten die Teilbogenmethode vorzuziehen ist. Die Berechnung von x und t erfolgt sinngemäß. Wir wollen die Berechnung hier nicht numerisch durchführen, sondern nur darauf hinweisen, daß x und t reine Funktionen von z sind, da y und w als Funktionen von z auf Grund der vorhergehenden Integration bekannt sind. Man kommt also für diese Elemente mit den Formeln (a) der Gleichungen (186/187) aus.

b) Das Verfahren

der wiederholten Integration

Wir wollen nunmehr daran gehen, das im Abschnitt (§ 18b) geschilderte graphische Verfahren als numerische Methode darzustellen. — Zunächst ergibt sich für das Integral der Differentialgleichung

$$y' = f(x, y)$$

aus der integrierten Besselschen Interpolationsformel^(IX) die Beziehung

(188)
$$\begin{cases} x_{\nu+1} - y_{\nu} = \int_{x_{\nu}}^{x_{\nu+1}} f(x, y) \, dx = \\ h \cdot \left[\frac{f_{\nu} + f_{\nu+1}}{2} - \frac{1}{12} \cdot \frac{\Delta^2 f_{\nu} + \Delta^2 f_{\nu+1}}{2} \\ + \frac{11}{720} \cdot \frac{\Delta^4 f_{\nu} + \Delta^4 f_{\nu+1}}{2} - \cdots \right]. \end{cases}$$

Hierin bedeuten: $x_{\nu} = x_0 + \nu \cdot h$; y_{ν} ist der dazugehörige Wert der Lösung. Weiter ist $f_{\nu} = f(x_{\nu}, y_{\nu})$, während $\Delta^2 f_{\nu}$ usw. die Differenzen 2. Ordnung usw. an der entsprechenden Stelle darstellen. Die Bedeutung der Bezeichnungen geht auch aus dem nebenstehenden Differenzen- und Rechenschema hervor.

Für die Anwendung der Formel (188) muß die Kenntnis der f_{ν} , d. h. der y_{ν} vorausgesetzt werden. — Das ist aber zunächst nicht der Fall; wir können jedoch die y_{ν} durch Näherungswerte $y_{\nu}^{(1)}$ ersetzen, die wir in f(x, y) eintragen, womit dann $f_{\nu} = f(x_{\nu}, y_{\nu}^{(1)})$ entsteht. Aus diesen Näherungsfunktionen ergeben sich die Differenzen $\Delta^{1}f_{\nu\mu\nu} \Delta^{2}f_{\nu}, \ldots$, die, in Formel (188) eingetragen, die zweiten Näherungswerte $y_{\nu}^{(2)}$ ergeben. Wiederholt man mit diesen $y_{\nu}^{(2)}$ denselben Prozeß, so konvergieren die weiteren Näherungen gegen die wahre

.wau	n •wsn						
$A^{4}f^{p}$	∆ ⁴ ∫ ₈ = .1 ³ ∫ ₃₂ − .1 ³ f ₂₁						
Aªfr∉	$A^{3}f_{21} = A^{2}f_{3} - A^{2}f_{1}$ $A^{3}f_{32} = A^{2}f_{3} - A^{2}f_{3}$						
Asf.	$\begin{aligned} & A^{2}f_{1} = \Delta^{1}f_{21} - \Delta^{1}f_{10} \\ & \Delta^{2}f_{3} = \Delta^{1}f_{32} - \Delta^{1}f_{21} \\ & \Delta^{2}f_{3} = \Delta^{1}f_{43} - \Delta^{1}f_{32} \\ & \Delta^{2}f_{3} = \Delta^{1}f_{43} - \Delta^{1}f_{32} \end{aligned}$						
d1fnp	$ \begin{aligned} &\Delta^{1} f_{10} = f_{1} - f_{0} \\ &\Delta^{1} f_{21} = f_{2} - f_{1} \\ &\Delta^{1} f_{22} = f_{3} - f_{2} \\ &\Lambda^{1} f_{43} = f_{4} - f_{3} \end{aligned} $						
f(x, y)	$f_0 = f(x_0, y_0)$ $f_1 = f(x_1, y_1)$ $f_2 = f(x_2, y_2)$ $f_3 = f(x_3, y_3)$ $f_4 = f(x_4, y_4)$						
y	Y a Y a Y a Y a						
ĸ	$\begin{aligned} x_0 &= x_0 \\ x_1 &= x_0 + h \\ x_2 &= x_0 + 2h \\ x_3 &= x_0 + 3h \\ x_4 &= x_0 + 4h \end{aligned}$						

Lösung, wie wir oben gezeigt haben. Für $\nu = 0$ erhalten wir den bekannten Anfangswert y_0 . Die ersten Näherungswerte $y_1^{(1)}$ werden zweckmäßig aus der Rekursionsformel

(189)
$$y_{\nu+1}^{(1)} = y_{\nu}^{(1)} + f(x_{\nu}, y_{\nu}^{(1)}) \cdot h$$

gebildet, die aus der Taylorreihe durch Vernachlässigung der höheren Glieder entsteht. Nachdem die ersten y_{ν} genau bekannt sind, kann man bei Fortführung der Rechnung die weiteren y_{ν} über die Differenzen Δ^4 , Δ^3 , Δ^2 , Δ^1 durch Extrapolation bestimmen, z. B.: Es sei $\Delta^4 f_3 \sim \Delta^4 f_2$; dann wird $\Delta^3 f_{43} = \Delta^4 f_2 + \Delta^3 f_{32}$; $\Delta^2 f_4 = \Delta^3 f_{43} + \Delta^2 f_3$; $\Delta^1 f_{54} = \Delta^2 f_4 + \Delta^1 f_{43}$; $f_5 = \Delta^1 f_{54} + f_4$. Bei der praktischen Durchführung der Rechnung wird man das Differenzenund Rechenschema mit Bleistift ausfüllen und die endgültigen Werte erst dann mit Tinte eintragen, wenn das Ergebnis bei Wiederholung der Rechnung nicht mehr geändert wird. Handelt es sich um die Integration eines Systems von 2 Differentialgleichungen, wie es ja in der Ballistik der Fall ist, so muß natürlich mit zwei getrennten Differenzenschemata gearbeitet werden, in Analogie zum oben beschriebenen graphischen Verfahren von Cranz und Rothe. Die Integrationsformeln usw. ändern sich dadurch jedoch nicht.

An dieser Stelle sei auf einen neuartigen Lösungsansatz hingewiesen, den in allerletzter Zeit Bucerius⁽⁶⁰⁾ gegeben hat. Statt als Anfangswertproblem formuliert er das außenballistische Problem als Randwertaufgabe, bei dem Schußweite X und Flugzeit T vorgegeben werden. Das führt auf Integralgleichungen für x(t) und y(t) von folgender Form

$$\begin{aligned} x(t) &= \frac{X}{T} \cdot t + \int_{0}^{T} G_{1}(t,t') \left| c \cdot \frac{f(v)}{v} \cdot \dot{x} \right|_{t=t'} \cdot dt'; \\ y(t) &= \int_{0}^{T} G_{1}(t,t') \cdot \left[c \cdot \frac{f(v)}{v} \cdot \dot{y} + g \right|_{t=t'} \cdot dt', \end{aligned}$$

wo $G_1(t, t')$ die bekannte Greensche Funktion

$$G_1(t,t') = \left| \begin{array}{cc} t \cdot \left(1 - \frac{t'}{T}\right) & \text{für} \quad t \leq t' \\ t' \cdot \left(1 - \frac{t}{T}\right) & \text{für} \quad t \geq t' \end{array} \right|$$

ist. Die Lösung der vorstehenden Integralgleichungen erfolgt nach der Methode der unendlich vielen Variablen mittels des Ansatzes

$$\frac{x(t)}{X} = \frac{t}{T} + \sum_{1}^{\infty} a_{\nu} \cdot \sin\left(\nu \cdot \pi \cdot \frac{t}{T}\right); \quad \frac{y(t)}{g \cdot T^2} = \sum_{1}^{\infty} c_{\nu} \cdot \sin\left(\nu \cdot \pi \cdot \frac{t}{T^{*}}\right)$$

und der Bilinearrelation des Kernes

$$\frac{1}{T} \cdot G_1(t, t') = \sum_{1}^{\infty} \frac{\sin\left(\nu \cdot \pi \cdot \frac{t}{T}\right) \cdot \sin\left(\nu \cdot \pi \cdot \frac{t'}{T}\right)}{\nu^2 \cdot \pi^2}.$$

Auf Einzelheiten können wir hier nicht eingehen; dazu lese man den Originalaufsatz nach. — Eine praktische Verwertung dieses Gedankens scheint allerdings bisher noch recht schwierig, einmal wegen des erheblichen Rechenaufwandes, zum andern aber wegen der Tatsache, daß die Anfangswerte erst aus den Lösungen bestimmt werden können.

§ 20. Mechanische Integration der ballistischen Bewegungsgleichungen

Im Laufe der Zeit ist eine Reihe von Apparaturen beschrieben worden, die die Integrationen der ballistischen Differentialgleichungen auf mechanischem Wege durchführen sollen. Soweit es sich nur um die Hodographengleichung mit konstantem Luftgewicht und konstanter Temperatur handelt, können die Vorrichtungen verhältnismäßig einfach gehalten werden, wie Filloux⁽⁸⁸⁾, Pascal⁽⁸⁷⁾ und Vahlen⁽⁴⁾ gezeigt haben. Schon die Berücksichtigung auch der übrigen Flugbahnelemente kompliziert die Apparate (Perrin⁽⁸⁶⁾, Jakob⁽²⁹⁾ u. a.). In neuerer Zeit sollen in Deutschland, Belgien und Amerika ballistische Integraphen entwickelt worden sein, die auch der Höhenveränderlichkeit der Atmosphäre Rechnung tragen; ein ballistischer Integraph, der das Luftgewicht gemäß der Everlingschen Formel berücksichtigt, ist von Füsgen⁽⁸⁹⁾ beschrieben worden; über eine praktische Ausführung dieses Geräts ist nichts bekannt. Auf jeden Fall sind solche für die moderne Ballistik geeigneten "Ballistographen" sehr kompliziert, umfangreich und entsprechend kostspielig.

In neuester Zeit ist von Ö. M. Salih⁽⁶⁵⁾ eine Prüfung der wichtigsten Methoden der äußeren Ballistik zur Ermittlung der Geschoßbahnen hinsichtlich Genauigkeit und Zeitaufwand vorgenommen worden. Wir können hier auf seine Ergebnisse nicht näher eingehen. Diese ausführliche Arbeit kommt zu dem Schluß, daß die graphische Methode von Cranz und Rothe in jeder Beziehung die vorteilhafteste sein soll. Neben dem Verfahren Runge-Kutta ist ein numerisches Iterationsverfahren leider nicht untersucht worden; die Praxis hat aber ergeben, daß z. B. das in (§ 19b) beschriebene Verfahren der wiederholten numerischen Integration der graphischen Methode von Cranz und Rothe bezüglich Arbeitsaufwand, wenn eine gute Rechenmaschine zur Verfügung steht, und bezüglich Genauigkeit durchaus gleichwertig sein dürfte*.

Kap. VI. Der Drall. Einfluß der Kreiselwirkung auf die Flugbahn

§ 21. Allgemeine Gesichtspunkte

Bei der Berechnung der Flugbahn eines Geschosses haben wir bisher stillschweigend von der Annahme Gebrauch gemacht, daß das Geschoß als Massenpunkt betrachtet werden könne, in dem Schwerkraft und Luftwiderstand angreifen. Bei den modernen Langgeschossen der Artillerie stellt diese Annahme aber nur eine Annäherung an die Wirklichkeit dar, die zwar fast immer ausreicht, bei theoretischen Untersuchungen jedoch nicht übergangen werden darf. Die Form dieser Langgeschosse hat, wie schon oben angedeutet wurde, mehrere Gründe: einmal Vergrößerung der Masse und damit der Querschnittsbelastung, was nach obigem zur Verminderung der Luftwiderstandsverzögerung führt, zum anderen aber die Möglichkeit zur Stabilisierung des Geschosses durch Rotation um die Längsachse. Diese Rotation wird dem Geschoß durch die von links nach rechts im Geschützrohr verlaufenden Züge vermittelst des sich in diese Vertiefungen einpressenden kupfernen Führungsbandes des Geschosses aufgezwungen. Sie bewirkt, daß das Geschoß die Eigenschaften eines Kreisels annimmt und,

^{*} Während der Drucklegung dieses Buches erschien eine Schrift von K. Stange⁽³¹⁾, welche die ausführliche Darstellung eines Iterationsverfahrens enthält.

wie unten noch näher auseinanderzusetzen sein wird, eine Präzessions- und Nutationsbewegung um die Flugbahntangente ausführt. Dadurch fallen Geschoßachse und Flugbahntangente nicht mehr zusammen; das Geschoß bietet der vorbeistreichenden Luft nicht mehr seine Spitze dar, sondern es wird seitlich von ihr getroffen. Durch diese Querstellung des Geschosses wird infolge der Vergrößerung der Angriffsfläche auch der Luftwiderstand vergrößert, zum anderen aber starke Einflüsse der Kreiselwirkungen erst ausgelöst.*

Die Querstellung des Geschosses wird bewirkt durch das Auseinanderfallen der Angriffspunkte von Schwerkraft und Luftwiderstand: die Schwerkraft greift im Massenmittelpunkt des Geschosses an, während der Luftwiderstand in einem Zentrum zwischen Schwerpunkt und Geschoßspitze einsetzt. Nach Versuchen, die der deutsche Mathematiker Kummer⁽⁹⁰⁾ 1876 durchführte, liegt der Angriffspunkt des Luftwiderstandes auf der Längsachse des Geschosses, aber um so näher zur Geschoßspitze hin, je kleiner der "Anstellwinkel" α des Geschosses gegen die Flug-

bahntangente ist; in Abb. 22 sind diese Verhältnisse schematisch für verschiedene Anstellwinkel dargestellt. Der außerhalb des Geschoßschwerpunktes angreifende Luftwiderstand verursacht ein Drehmoment um den Schwerpunkt, welches das Geschoß um eine zur Längsachse senkrechte Querachse nach hinten zu kippen bestrebt ist. Die Längsachse des Geschosses, die wegen der Rotation des Geschosses in diesem Falle die Figurenachse eines symmetrischen Kreisels darstellt, weicht aber dem Drehmoment senkrecht im Sinne der Geschoßrotation aus: das Geschoß führt eine Präzessionsbewegung aus. Dieser überlagert sich noch die aus der Kreisellehre bekannte schnellere Nutationsbewegung der Geschoßachse um die Impulsachse.

Abb. 22. Angriffspunkte des Luftwiderstandes nach Kummer

^{*} Während der Drucklegung dieses Buches veröffentlichte Th. Schunck(96a) eine sehr ausführliche Zusammenfassung aller bekannten Arbeiten zum Problem des rotierenden Langgeschosses.

Durch geeignete Wahl der Geschoßform und des Geschoßgewichts müssen nun die Kreiselwirkungen so auf den Flugbahnverlauf abgestimmt werden, daß einerseits die Nutationswirkungen möglichst ausgeschaltet werden, um ein "Flattern" des Geschoßrotation zu gewährleisten; zum anderen muß die Präzessionswirkung dazu ausgenutzt werden, daß die Geschoßachse stets möglichst nahe in die Flugbahntangente gezwungen wird, um "Folgsamkeit" des Geschosses zu erreichen, damit es mit der Spitze im Ziel auftrifft.

§ 22. Folgsamkeit und Stabilität

Die Ausführungen dieses Abschnitts sollen nunmehr in Anlehnung an die Darstellung von Hänert⁽¹⁶⁾ ein qualitatives Bild der Verhältnisse beim rotierenden Geschoß geben, um eine passende

Abb. 23. Verlagerung der Kreiselachsen beim Geschoß Abgrenzung bei der mathematischen Behandlung des Problems zu ermöglichen. --In Abb. 23 ist die Meridianebene eines Geschosses herausgezeichnet, in der die Geschoßachse und die Richtung des unter dem Winkel α im Punkt P der Achse angreifenden Luftwiderstandes W liegen; diese Ebene führt daher auch den Namen Widerstandsebene. Auf dieser Ebene steht der Vektor \overrightarrow{M} des durch den Luftwiderstand verursachten Drehmoments senkrecht*, in Abb. 23 nach vorn gerichtet. Mit der Geschoßachse gleichgerichtet sind anfangs die Vektoren $\vec{\omega}$ und $\vec{\Theta}$ der Rotationswinkelgeschwindigkeit bzw. des Drehimpulses $\Theta = C \cdot \vec{\omega}$, wo \vec{C} das Trägheitsmoment um die Längsachse des Geschosses ist. Das rotierende Geschoß verhält sich dem Dreh-

* In den Entwicklungen zur Theorie des Dralls sollen die mit einem darübergesetzten Pfeil verschenen Elemente Vektoren darstellen, deren Skalare ohne Pfeil geschrieben werden; z. B. $\vec{M} =$ Vektor des Drehmoments, M = skalare Größe von \vec{M} .

moment M gegenüber wie ein Kreisel: seine Impulsachse, die zu Beginn mit Geschoßachse und Drehachse zusammenfällt, weicht senkrecht zu \overrightarrow{M} und $C \cdot \overrightarrow{\omega}$ im Sinne der Rechtsrotation aus. Wirkt das Drehmoment, das zunächst als konstant angenommen werde, während der kurzen Zeit Δt , so ist nach dem Flächensatz die Änderung des Drehimpulses gegeben durch

$$\Delta \vec{\Theta} = \vec{M} \cdot \Delta t.$$

Diese Komponente steht senkrecht auf der Kreiselachse und ist parallel \vec{M} . Dieser Vorgang wiederholt sich in jedem Zeitabschnitt Δt , so daß der Impulsvektor einen Kegel mit dem halben Öffnungswinkel α beschreibt, dessen Spitze im Schwerpunkt S des Geschosses liegt; dabei bewegt sich also die Spitze des Vektors $\vec{\Theta}$ mit der Bahngeschwindigkeit $\frac{\Delta \Theta}{\Delta t} = M$ auf einem Kreise, dessen Radius gleich $\Theta \cdot \sin \alpha = C \cdot \omega \cdot \sin \alpha$ ist. Die Winkelgeschwindigkeit μ dieser sog. "Präzessionsbewegung" ist mithin gegeben durch

(190)
$$\mu = \frac{M}{C \cdot \omega \cdot \sin \alpha},$$

während der Winkel zwischen zwei benachbarten Lagen der Drehimpulsachse bestimmt wird aus der Beziehung

(191a)
$$\Delta \chi = \frac{\Delta \Theta}{\Theta} = \frac{M}{C \cdot \omega} \cdot \Delta t.$$

Bezeichnen wir nun noch mit A das Trägheitsmoment um eine zur Längsachse des Geschosses senkrechte Achse in S, so ist wiederum nach dem Flächensatz

$$\vec{M} \cdot \varDelta t = A \cdot \varDelta \vec{\omega}$$

und somit der Winkel zwischen zwei benachbarten Lagen der Drehachse

(191b)
$$\Delta \psi = \frac{\Delta \omega}{\omega} = \frac{M}{A \cdot \omega} \cdot \Delta t.$$

Man erkennt nunmehr, daß nach Ablauf eines Zeitelementes Δt die Geschoßachse, Impulsachse und Drehachse nicht mehr zusammenfallen, da $\Delta \psi$ und $\Delta \chi$ wegen $C \neq A$ verschieden sind. Wir nehmen nun vorübergehend an, daß die Einwirkung des Luftwiderstandes und damit des Drehmomentes M nach Ablauf der Zeit Δt aufhöre; dann behält die Impulsachse ihre neue Richtung bei, während die Geschoßachse und die Drehachse um die Impulsachse eine Bewegung ausführen, die wir folgendermaßen

Abb. 24. Bestimmung der Nutationsbewegung

beschreiben können: Mit dem Geschoß ist ein spitzer Kegel mit dem halben Öffnungswinkel $\Delta \psi$ verbunden, dessen Achse mit der Geschoßachse zusammenfällt und dessen Spitze im Schwerpunkt des Geschosses liegt. Dieser Kegel rollt auf einem anderen spitzen Kegel, der mit der Spitze im Geschoßschwerpunkt festliegt und den halben Öffnungswinkel $(\Delta \chi - \Delta \psi)$ hat, während seine Achse mit der neuen Impulsrichtung zusammenfällt. Im Abstande 1 vom Schwerpunkt S

(Abb. 24) rollen also die beiden Kreise K_1 und K_2 mit den Radien $\Delta \psi$ bzw. ($\Delta \chi - \Delta \psi$) aufeinander ab. Während der Zeit Δt möge auf K_1 der Bogen ($\Delta \gamma_1 \cdot \Delta \psi$) auf dem gleichgroßen Bogen $\Delta \gamma_2 \cdot (\Delta \chi - \Delta \psi)$ des Kreises K_2 abrollen; es gilt also

Andererseits dreht sich aber in der gleichen Zeit K_1 um den Winkel $(\varDelta \gamma_1 + \varDelta \gamma_2)$, d. h. mit der Winkelgeschwindigkeit $\frac{\varDelta \gamma_1 + \varDelta \gamma_2}{\varDelta t}$; diese muß gleich der Rotationsgeschwindigkeit ω sein, d. h.

(192a)
$$\omega = \frac{\Delta \gamma_1 + \Delta \gamma_2}{\Delta t}.$$

Durch Verbindung der Gleichungen (191a), (191b), (192) und (192a) erhält man also für die Winkelgeschwindigkeit $v = \frac{\Delta \gamma_0}{\Delta t}$ der Rotation der Drehachse und damit der Geschoßachse um die Impulsachse:

(193)
$$v = \omega \cdot \frac{\Delta \psi}{\Delta \chi} = \frac{C}{A} \cdot \omega$$

Diese Bewegung der Geschoßachse um die Impulsachse heißt

Nutation; sie erfolgt wesentlich schneller als die Präzession und ist vom Drehmoment unabhängig. -

Wir kehren nunmehr zu dem Falle zurück, daß M während jedes Zeitelements Δt wirkt und daß somit die Präzession der Impulsachse aufrechterhalten wird; dieser wird noch die Nutationsbewegung überlagert. — Das Geschoß wird nur dann als genügend stabil* bezeichnet werden können, wenn die Einflüsse der Nutation für jede kurzzeitige Lage der Impulsachse im Mittel von gleicher Größe werden; das ist der Fall, wenn die Nutationsbewegung sehr viel schneller abläuft als die Präzessionsbewegung. Denn dann erfolgen für jede Lage der Präzessionsachse noch mehrere Nutationsumdrehungen. Entsprechend bezeichnet man als "Stabilitätsfaktor" den Ausdruck

(194)
$$4 \sigma = \frac{\mathbf{v}}{\mu} = \frac{(C \cdot \omega)^2}{A \cdot \frac{M}{\sin \alpha}}.$$

Nur wenn σ genügend groß ist, werden unzulässig starke Nutationsamplituden vermieden.

Wir müssen nun den Begriff der Folgsamkeit etwas näher erläutern. Nach den obigen Bemerkungen soll erreicht werden, daß die Geschoßachse der Flugbahntangente stets möglichst nahe bleibt, d. h. daß sie ihr derart folgt, daß die Geschoßachse dauernd möglichst genau in die Tangentenrichtung fällt. Nur wenn die Präzessionsbewegung sehr viel schneller verläuft als die Drehung der Flugbahntangente entlang der Flugbahn, kann die Geschoßachse der Tangente folgen. Im umgekehrten Falle wird die Geschoßachse fast stets einen großen Winkel mit der Tangente bilden; für einen seitlichen Beobachter wird die Geschoßachse nahezu sich selbst parallel bleibend erscheinen. — Die Präzessionsgeschwindigkeit ist μ [vgl. (190)]; die Winkelgeschwindigkeit der Tangentendrehung ist $\frac{d\vartheta}{dt}$ [vgl. (45 a)]. Somit kann ein Geschoß als folgsam bezeichnet werden, wenn der Folgsamkeitsfaktor

(195)
$$j = \mu : \frac{d\vartheta}{dt} = \frac{M}{\sin a} \cdot \frac{v}{C \cdot \omega \cdot g \cdot \cos \vartheta}$$

genügend groß ist. Da σ am kleinsten im Abgangspunkt der

^{*} Wir machen darauf aufmerksam, daß die hier gebrachten Ableitungen von "Stabilität" und "Folgsamkeit" nicht streng im Sinne der Kreiseltheorie sind, sondern mehr als Plausibilitätserklärungen aufzufassen sind.

Flugbahn, f am kleinsten ungefähr im Gipfelpunkt ist, definiert man diese beiden Größen zweckmäßig für diese Punkte:

(195a)
$$\sigma_0 = \frac{(C \cdot \omega)^2 \cdot g}{4 \cdot A \cdot h \cdot c^* \cdot f(v_0) \cdot P}; \quad j_s = \frac{h \cdot c \cdot \delta(y_s) \cdot f(v_s) \cdot v_s \cdot P}{C \cdot \omega \cdot g^2}$$

Hierin ist h der Abstand des Angriffpunktes des Luftwiderstandes vom Schwerpunkt des Geschosses; für kleine Winkel α kann also $M = h \cdot c \delta(y) \cdot f(v) \cdot \sin \alpha \cdot \frac{P}{g}$ gesetzt werden. Schließlich bemerkt man noch, daß σ_0 und f_s sich durch Variation von C, ω, h, A im umgekehrten Sinne ändern. Infolgedessen wird man in der Praxis stets einen Kompromiß zu schließen haben, aber so, daß σ_0 und f_s gleichzeitig genügend groß bleiben.*

Wir machen zum Schluß noch darauf aufmerksam, daß die Geschoßachse sich wegen des Rechtsdralls im wesentlichen auf der rechten Seite der Flugbahnebene aufhält. Somit muß also beim Fluge durch die widerstehende Luft ein Seitenabtrieb nach rechts erfolgen.**

§ 23. Die Bewegungsgleichungen unter dem Einfluß des Dralls

Die in den Formeln (43) bis (47) gegebenen Differentialgleichungen der Bewegung müssen bei Berücksichtigung des Dralls eine Veränderung erfahren, die sich aus folgenden Überlegungen ergibt: Die in den Widerstandstabellen niedergelegten Werte für f(v) bzw. K(v) gelten strenggenommen nur unter der Voraussetzung, daß das fliegende Geschoß von der entgegenströmenden Luft genau von vorne getroffen wird. Bei der Drallbewegung tritt nun aber ein "Anstellwinkel" a der Geschoßachse gegen die Flugbahntangente auf, so daß die dem Luftstrom dargebotene Geschoßfläche und damit der Widerstand vergrößert wird. Weiterhin tritt eine seitlich nach außen gerichtete Komponente auf, die das Geschoß nach der Seite abtreibt. Schließlich wird durch die Schrägstellung des Geschosses ein Drehmoment um eine Quer-

^{*} Cranz⁽¹⁾ hält $\sigma_0 = 1$ für ausreichend, um einen guten Geschoßflug zu gewährleisten. Vgl. zu dieser Frage auch besonders die Arbeit von Schunck^(96a).

^{**} Nur bei Steilbahnen kann unter der Wirkung des Magnuseffekts auch Linksabweichung eintreten, wenn das Geschoß einwandfrei stabilisiert ist.

achse des Geschosses hervorgerufen. Nach einem Vorschlag von $\operatorname{Cranz}^{(1)}$ kann man für diese 3 Kräfte folgenden Näherungsansatz machen:

(196)
$$W_t = W_0 \cdot (1 + \lambda_t); \quad W_s = W_0 \cdot \lambda_s; \quad M = W_0 \cdot h \cdot \lambda_m$$

Dabei ist W_t die in die Richtung der Flugbahntangente fallende und der Flugrichtung entgegengesetzte Komponente des Luftwiderstandes (s. Abb. 26); W_s ist die seitliche Komponente, die in der Widerstandsebene senkrecht auf W_t steht und außerhalb des Anstellwinkels so gerichtet ist, daß die positive Tangentenrichtung durch eine Rechtsdrehung nacheinander in die Impulsachse und die positive Richtung von W_s übergeht. M ist das Drehmoment, das senkrecht auf der Widerstandsebene steht, während h den mittleren Abstand des Geschoßschwerpunktes vom Angriffspunkt des Luftwiderstandes bezeichnet. λ_t , λ_s und λ_m sind Funktionen des Anstellwinkels α , die in erster Näherung als von der Geschwindigkeit unabhängig betrachtet werden können (Abb. 25). W_0 ist

Abb. 25. Faktoren für die Komponenten des Luftwiderstandes (nach Cranz)

schließlich der Luftwiderstand des Geschosses für a = 0, d. h. der in den Widerstandstabellen niedergelegte Wert. Für kleine Werte von a kann man näherungsweise

$$\lambda_t = 0; \quad \lambda_s = \sin a; \quad \lambda_m = \sin a$$

ansetzen.

Athen, Ballistik

194 Kap. VI. Der Drall. Einfluß der Kreiselwirkung auf die Flugbahn

Die Gestalt der Flugbahn wird bei Querstellung des Geschosses noch durch den Einfluß der Magnuskraft verändert; diese steht senkrecht auf der Widerstandsebene und ist M entgegengesetzt gerichtet. Nach P. G. Tait ist der Betrag der Magnuskraft gegeben durch

(197)
$$K = \Sigma \cdot \frac{\delta(y)}{\delta_{\mathbf{0}}} \cdot v \cdot \sin a \cdot \omega,$$

•

wo $\delta(y)$ das Luftgewicht in der Höhe y, α den Anstellwinkel des Geschosses, ω die Winkelgeschwindigkeit der Rotation und Σ eine von der Oberflächenform des Geschosses abhängige Konstante bedeutet.

Die Einflüsse des Poissoneffekts und der seitlichen Reibungen, die die Rotationsgeschwindigkeit des Geschosses vermindern und weitere Drehmomente verursachen, wollen wir im folgenden als geringfügig vernachlässigen. Weiterhin wollen wir annehmen, daß Stabilitätsfaktor σ_0 und Folgsamkeitsfaktor f_s den oben angegebenen Bedingungen entsprechen, so daß die Geschoßachse im wesentlichen mit der Achse des Drehimpulses Θ zusammenfällt. Bei der Entwicklung der Formeln bezeichnen wir wieder einen Vektor durch einen über seinen Skalar gesetzten Pfeil.

In Abb. 26 sei der Mittelpunkt der Kreise der Schwerpunkt Sdes Geschosses, ξ die Richtung der Flugbahntangente, η die Richtung der Flugbahnbinormalen senkrecht zur Schußebene und waagerecht nach rechts und ζ die abwärts fallende Hauptnormale der Flugbahn. a ist der Winkel zwischen Flugbahntangente und Geschoßachse, in deren Richtung der Drehimpuls $\vec{\Theta}$ fällt. ψ ist der Winkel zwischen der negativen ζ -Achse und der Richtung von \vec{W}_s . Die Richtungen von $\vec{W}_t, \vec{W}_s, \vec{M}, \vec{K}$ und $\vec{\Theta} = C \cdot \vec{\omega}$ gehen aus der Abb. 26 hervor. Man liest unschwer die Komponenten dieser Größen in bezug auf die Achsen (ξ, η, ζ) aus der Abbildung ab; sie sind im nachstehenden Schema eingetragen.

		Wt	W _s	М	K	Θ
(198)	$\xi \eta \zeta$	$-W_t$ 0 0	$0 \\ + W_s \cdot \sin \psi \\ - W_s \cdot \cos \psi$	$0 \\ M \cdot \cos \psi \\ M \cdot \sin \psi$	$ \begin{array}{c} 0 \\ -K \cdot \cos \psi \\ -K \cdot \sin \psi \end{array} $	$ \begin{array}{l} + \Theta \cdot \cos a \\ + \Theta \cdot \sin a \cdot \sin \psi \\ - \Theta \cdot \sin a \cdot \cos \psi \end{array} $

 W_t , W_s und K gehen in die Translationsgleichungen der Geschoßbewegung ein. Somit ist bei Einführung eines im Geschoßschwerpunkt liegenden, zum bisher benutzten Koordinatensystem

Abb. 26. Kräftespiel beim rotierenden Geschoß

(x, y, z) parallelen Systems und Benutzung der gewohnten Bezeichnungen

$$\bar{x} = \xi \cdot \cos \vartheta + \zeta \cdot \sin \vartheta; \quad \bar{y} = \xi \cdot \sin \vartheta - \zeta \cdot \cos \vartheta; \quad \bar{z} = \eta_z$$

folglich gilt mit Berücksichtigung des obigen Schemas das folgende System von Bewegungsgleichungen

(199)
$$\begin{aligned} \ddot{x} &= \\ \frac{g}{P} \cdot [-W_t \cdot \cos\vartheta - W_s \cdot \cos\psi \cdot \sin\vartheta - K \cdot \sin\psi \cdot \sin\vartheta]; \\ \ddot{y} &= \\ \frac{g}{P} \cdot [-W_t \cdot \sin\vartheta + W_s \cdot \cos\psi \cdot \cos\vartheta + K \cdot \sin\psi \cdot \cos\vartheta] - g; \\ \ddot{z} &= \frac{g}{P} \cdot [W_s \cdot \sin\psi - K \cdot \cos\psi] \end{aligned}$$

(P = Geschoßgewicht)

Zu diesen Translationsgleichungen kommen noch die Rotationsgleichungen für den Drall. Diese leiten sich folgendermaßen ab: Das Bezugssystem (ξ, η, ζ) führt eine Drehbewegung um die η -Achse mit der Winkelgeschwindigkeit $\frac{d\vartheta}{dt}$ aus, während das Geschoß in bezug auf dieses System seine Drallbewegung vollzieht. Für solche Relativbewegungen gilt bekanntlich die Eulersche Gleichung in Vektorform

(200)
$$\frac{d\vec{\Theta}}{dt} + [\vec{\Omega} \cdot \vec{\Theta}] = \vec{M},$$

in der $\overrightarrow{\Theta}$ und \overrightarrow{M} die angegebene Bedeutung haben, während $\overrightarrow{\Omega}$ der Rotationsvektor des Systems (ξ, η, ζ) ist. Seine Komponenten in bezug auf ξ, η, ζ sind bzw. $(0, \dot{\vartheta} = -\frac{g \cdot \cos \vartheta}{v}, 0)$. Mit Hilfe des obigen Komponentenschemas hat man also die 3 Gleichungen der Drallbewegung, wenn $\overrightarrow{\Theta}$ die Komponenten $\Theta_{\xi}, \Theta_{\eta}, \Theta_{\zeta}$ hat:

$$(201) \begin{cases} \dot{\Theta}_{\xi} = -\dot{\vartheta} \cdot \Theta_{\chi} & \dot{X} = -\dot{\vartheta} \cdot Z \\ \dot{\Theta}_{n} = + M \cdot \cos \psi & \text{oder} & \dot{Y} = -\frac{M}{\Theta \cdot \sin a} \cdot Z \\ \dot{\Theta}_{\chi} = + \dot{\vartheta} \cdot \Theta_{\xi} + M \cdot \sin \psi & \dot{Z} = \dot{\vartheta} \cdot X + \frac{M}{\Theta \cdot \sin a} \cdot Y \\ \text{Anfangsbedingungen:} t = 0 : X = 1; \quad Y = Z = 0 \end{cases}$$
wenn die Hilfskoordinaten

(201 a) $X = \cos \alpha; \quad Y = \sin \alpha \cdot \sin \psi; \quad Z = -\sin \alpha \cdot \cos \psi$

eingeführt werden, welche somit die Koordinaten einer Kugel um S mit dem Radius 1 darstellen. Führt man ϑ bzw. $\tau = \int f \cdot d\vartheta$ (f = Folgsamkeitsfaktor) als unabhängige Veränderliche in (201) ein, so ergeben sich die Gleichungen

(202) $\begin{vmatrix} \frac{dX}{d\theta} = -Z \\ \frac{dY}{d\theta} = f \cdot Z \\ \frac{dZ}{d\theta} = X - f \cdot Y \end{vmatrix}$ bzw. $\begin{vmatrix} \frac{dX}{d\tau} = -\frac{Z}{f} \\ \frac{dY}{d\tau} = Z \\ \frac{dZ}{d\tau} = \frac{X}{f} - Y \end{vmatrix}$ Anfangsbedingungen: $\begin{vmatrix} \theta = \varphi \\ bzw. \tau = \tau_0 \end{vmatrix} X = 1; Y = Z = 0.$

Damit ist die Lösung des außenballistischen Problems bei Drallbewegung des Geschosses gegeben. Dabei muß das System (199) simultan mit einem der Systeme (201) oder (202) integriert werden. Die Wahl der angegebenen Anfangsbedingungen der Systeme (201) und (202) setzt voraus, daß das Geschoß ohne seitlichen Stoß das Rohr genau zentriert verläßt; bei neuen Rohren dürfte das im allgemeinen der Fall sein.

§ 24. Die Integration der Bewegungsgleichungen bei Geschoßdrall

Die Integration des aus 6 Differentialgleichungen bestehenden Systems wird am zweckmäßigsten in mehreren gesonderten Schritten ausgeführt. Dabei führt die Methode der wiederholten Integration am ehesten zum Ziel. Ohne auf Einzelheiten einzugehen, wollen wir den Gang dieses Verfahrens kurz andeuten, dessen eingehende Betrachtung wir Popoff⁽⁹²⁾ verdanken.

Die erste Annäherung an die wirklichen Verhältnisse erhält man, wenn in (199) a = const = 0, d. h. $W_t = W_0$ und die Glieder mit K und W_s gleich Null gesetzt werden. Man erhält dann die ebene Flugbahnkurve (x, y), von der alle Elemente in Funktion von tbzw. ϑ bekannt sind. Mit diesen Werten geht man in eines der Systeme (201) oder (202) ein, die nach Ausführung der Integrationen α und ψ liefern. Mit diesen vorläufigen Werten kann man vorläufige Werte für W_s , W_t und K bestimmen, worauf die nochmalige Integration von (199) verbesserte Werte für x, y, z usw. ergibt. Die Wiederholung dieses Verfahrens liefert die Lösung mit ausreichender Genauigkeit.

Wir wollen nun die Bestimmung von a und ψ noch näher betrachten. Um das System (X, Y, Z) zu erhalten, formen wir (202) noch ein wenig um. Da es sich um folgsame Geschosse handeln soll, muß / genügend groß sein, d. h. viel größer als 1. Wir schreiben

$$t = \frac{M \cdot v}{C \cdot \omega \cdot \sin a \cdot g \cdot \cos \vartheta} = \frac{W_0 \cdot v}{C \cdot \omega \cdot g \cdot \cos \vartheta} \cdot \frac{h(a) \cdot \lambda_m(a)}{\sin a} = Q(\vartheta) \cdot \varkappa(a)$$

und

$$Q(\vartheta) \cdot d\,\vartheta = d\,\gamma.$$

Folglich geht (202) über in

(203)
$$\frac{dX}{d\gamma} = -\frac{Z}{Q}; \quad \frac{dY}{d\gamma} = \varkappa \cdot Z; \quad \frac{dZ}{d\gamma} = \frac{X}{Q} - \varkappa \cdot Y.$$

Nunmehr läßt sich Q zerlegen in die Summe $\frac{1}{Q(\gamma)} = m + q(\gamma)$, wo m einen konstanten Mittelwert von $\frac{1}{Q}$ bedeutet. In ähnlicher Weise erhält man, da $X = \cos a$ ist: $\varkappa(a) = S(X) = n + s(X)$; hierbei ist n ein konstanter Mittelwert von $\varkappa(a) = S(X)$. Nunmehr schreiben wir (202) unter Einführung einer Konstanten ε in der verallgemeinerten Form

(204)
$$\begin{vmatrix} \frac{dX}{d\gamma} = -(m+\varepsilon \cdot q) \cdot Z; & \frac{dY}{d\gamma} = (n+\varepsilon \cdot s) \cdot Z; \\ \frac{dZ}{d\gamma} = (m+\varepsilon \cdot q) \cdot X - (n+\varepsilon \cdot s) \cdot Y. \end{vmatrix}$$

Für $\varepsilon = 1$ erhält man wieder das ballistische Problem. — Man erkennt, daß die rechten Seiten dieser Gleichungen sich nach Potenzen von ε ordnen lassen. Infolgedessen lassen sich auch die Lösungen X, Y, Z nach Potenzen von ε ($\varepsilon \leq 1$) entwickeln. Wir machen daher den Ansatz

$$(205) \begin{cases} X = X_0 + \varepsilon \cdot X_1 + \varepsilon^2 \cdot X_2 + \cdots; \\ Y = Y_0 + \varepsilon \cdot Y_1 + \varepsilon^2 \cdot Y_2 + \cdots; & Z = Z_0 + \varepsilon \cdot Z_1 + \varepsilon^2 \cdot Z_2 + \cdots \end{cases}$$

Entwickelt man also in (204) die rechten Seiten nach Potenzen

von ε , führt den Ansatz (205) ein und vergleicht die Ausdrücke gleicher Potenzen von ε , so erhält man die Systeme:

(206)

$$\begin{array}{l} X_{0}' = -m \cdot Z_{0}; & X_{1}' = -q \cdot Z_{0} - m \cdot Z_{1}; \\ Y_{0}' = n \cdot Z_{0}; & Y_{1}' = s \cdot Z_{0} + n \cdot Z_{1}; \\ Z_{0}' = m \cdot X_{0} - n \cdot Y_{0}; \ Z_{1}' = q \cdot X_{0} - s \cdot Y_{0} + m \cdot X_{1} - n \cdot Y_{1}; \\ usw. \end{array}$$

mit den Anfangsbedingungen: $X_0(0) = 1$; $Y_0(0) = Z_0(0) = X_1(0) = Y_1(0) = Z_1(0) = 0$, usw. (Striche bedeuten die Ableitungen nach γ).

Die Integration dieser Systeme macht keine Schwierigkeiten. Differenziert man nämlich die letzte Gleichung des ersten Systems nach γ und setzt die Werte für X_0' und Y_0' ein, so folgt

 $Z_0'' + (n^2 + m^2) \cdot Z_0 = 0.$

Das Integral dieser Gleichung lautet^(X), da $Z_0(0) = 0$ und $Z_0'(0) = m$:

$$Z_0 = \frac{m}{\sqrt{m^2 + n^2}} \cdot \sin\left(\gamma \cdot \sqrt{m^2 + n^2}\right).$$

Diese Werte werden in die Gleichungen für X_0' und Y_0' eingesetzt; man erhält schließlich

(207)
$$X_{0} = \frac{n^{2}}{m^{2} + n^{2}} \cdot \left[1 + \frac{m^{2}}{n^{2}} \cdot \cos\left(\gamma \cdot \sqrt{m^{2} + n^{2}}\right) \right];$$
$$Y_{0} = \frac{m \cdot n}{m^{4} + n^{2}} \cdot \left[1 - \cos\left(\gamma \cdot \sqrt{m^{2} + n^{2}}\right) \right];$$
$$Z_{0} = \frac{m}{\sqrt{m^{2} + n^{2}}} \cdot \sin\left(\gamma \cdot \sqrt{m^{2} + n^{2}}\right) \quad \bullet$$

In ähnlicher Weise erhält man die Integrale des zweiten Systems. Mit demselben Verfahren wie oben folgt zunächst

$$Z_1'' + (m^2 + n^2) \cdot Z_1 = \psi(\gamma),$$

wo zur Abkürzung

$$\psi(\gamma) = -2[q \cdot m + s \cdot n] \cdot Z_0 + q' \cdot X_0 - s' \cdot Y_0$$

gesetzt wurde.

200 Kap. VI. Der Drall. Einfluß der Kreiselwirkung auf die Flugbahn

Das Integral dieser Gleichung entsteht durch Variation der Konstanten des allgemeinen Integrals der homogenen Gleichung^(X). Im übrigen erhält man die Lösungen X_1 und Y_1 wie oben. Das Ergebnis für Z_1 lautet z. B.:

(208)
$$\begin{vmatrix} Z_1 = \sin\left(\sqrt{m^2 + n^2} \cdot \gamma\right) \cdot \left[C_1 \cdot \int \frac{d\gamma}{\sin^2\left(\sqrt{m^2 + n^2} \cdot \gamma\right)} + \int \frac{d\gamma}{\sin^2\left(\sqrt{m^2 + n^2} \cdot \gamma\right)} \int \sin\left(\sqrt{m^2 + n^2} \cdot \gamma\right) \cdot \psi(\gamma) \, d\gamma + C_2 \end{vmatrix},$$

wo die Konstanten C_1 und C_2 aus den Anfangsbedingungen $Z_1(0)=0; \quad \dot{Z}_1(0)=q(0)$ zu bestimmen sind.

$$Z_1(0) = 0; \quad \dot{Z}_1(0) = q(0)$$

Die endgültige Lösung des Problems lautet also angenähert

 $X \approx X_0 + X_1; \quad Y \approx Y_0 + Y_1; \quad Z \approx Z_0 + Z_1.$

Zum Studium des Ablaufs der Drallbewegung betrachten wir das Lösungssystem (X_0, Y_0, Z_0) . Der Charakter der genauen Lösung wird den erhaltenen Ergebnissen im wesentlichen entsprechen, da ja X_1 , Y_1 , Z_1 nach dem vorangehenden nur als Korrekturglieder gelten sollen.

Die Spitze des Einheitsvektors des Impulses mit den Komponenten (X_0, Y_0, Z_0) bewegt sich auf der Kugel

$$X_0^2 + Y_0^2 + Z_0^2 = 1.$$

Andererseits folgt aber aus den ersten beiden Gleichungen (206): $n \cdot X_0' + m \cdot Y_0' = 0$, d. h. nach Integration die Ebenengleichung

$$n \cdot X_0 + m \cdot Y_0 = n.$$

Diese beiden Flächen ergeben als Schnitt den Ort der Spitze des Impuls-Einheitsvektors, nämlich einen im Raum auf der (X_0, Y_0) -Ebene senkrecht stehenden Kreis mit dem Radius $\rho = \frac{m}{1 m^2 + n^2}$. Da andererseits aber das Dreikant (X_0, Y_0, Z_0) sich auf der Flugbahn bewegt und eine Drehung um die Y-Achse mit der Winkelgeschwindigkeit $\frac{d\theta}{dt}$ ausführt, beschreibt die Geschoßspitze auf der Oberfläche einer mit dem Geschoßschwerpunkt fest verbundenen Kugel, deren Mittelpunkt im Schwerpunkt liegt, eine sphärische Zykloide. Weiterhin erkennt man aus (207) mit der Gleichung für Y_0 , daß die Geschoßachse zur Schußebene eine mittlere Schrägstellung nach rechts einnimmt; der mittlere Schrägstellungswinkel Σ ergibt sich zu

$$\operatorname{tg} \Sigma = \frac{m \cdot n}{m^2 + n^2}$$

Durch die Schrägstellung tritt, wie schon oben erwähnt, eine Abtrift des Geschosses nach rechts ein; diese Rechtsabweichung kann beim Schießen mit Drallgeschossen stets beobachtet werden. Die Umlauffrequenz der Geschoßspitze, d. h. die Zeit zur Vollendung eines Kreises im (X_0, Y_0, Z_0) -System beträgt nach (207)

$$\nu = \frac{2\pi}{\sqrt{m^2 + n^2}} \, .$$

Schließlich zeigt die letzte der Differentialgleichungen (199), daß Rechtsabweichung oder Linksabweichung des Geschosses eintritt, je nachdem

$$\int dt \int W_s \cdot \sin \psi \cdot dt \geq \int dt \int K \cdot \cos \psi \cdot dt.$$

Nur bei steilen Bahnen können im allgemeinen Verhältnisse eintreten, für die das untere Ungleichheitszeichen gilt. Linksabweichung tritt also dann ein, wenn der Einfluß des Magnuseffekts den des Kreiseleffekts überwiegt.

Wir wollen zum Abschluß dieses Abschnitts darauf hinweisen, daß bei beliebigen Größenverhältnissen des Stabilitätsfaktors σ und des Folgsamkeitsfaktors f die hier entwickelte Theorie nicht mehr allgemeingültig ist. Dann müssen unter Umständen weitere Glieder in den Rotationsgleichungen berücksichtigt werden, im besonderen auch das Trägheitsmoment um die Querachse des Geschosses. Dieser Fall ist eingehend von Cranz⁽¹⁾ und Schmundt⁽⁹³⁾ behandelt worden. Weiterhin müssen die seitlichen Reibungen der Luft berücksichtigt werden, wie es Gallop, Fowler, Lock und Richmond⁽⁹⁴⁾ versucht haben. In ähnlicher Weise wie hier ist das Problem von Sommerfeld⁽⁹⁵⁾, Noether⁽⁹⁶⁾ und Grammel⁽⁹¹⁾ behandelt worden; zu erwähnen ist schließlich noch die zusammenfassende Betrachtung von Schunck^(96a).

Kap. VII. Störungen der Flugbahnen

§ 25. Einfache Näherungsformeln

Die Schußtafeln (vgl. § 33a), mit denen der Artillerist sein Schießen durchführt, geben die Flugbahnelemente für bestimmte Anfangsgeschwindigkeiten, Geschoßgewichte, für Normalluftgewicht, Windstille usw. an. Es kann nun vorkommen, daß diese Voraussetzungen nicht genau erfüllt sind, sondern daß die oben bezeichneten Elemente kleine Abweichungen von den Normalwerten aufweisen, die beim Schießen ausgeschaltet werden müssen. Dazu brauchen nun im allgemeinen die Flugbahnen mit den veränderten Anfangselementen nicht neu berechnet zu werden, wenn ihre Abweichungen nicht zu groß sind und daher näherungsweise wie Größen 1. Ordnung oder Differentiale behandelt werden können.

Wir wollen zunächst eine Reihe von Näherungsformeln ableiten, die für Potenzgesetze und kleinere Anfangsgeschwindigkeiten gelten und für größere Anfangsgeschwindigkeiten zu Überschlagsrechnungen herangezogen werden können. Zur Ableitung greifen wir auf die Formeln (150) bis (151 c) zurück. Wir stellen die Forderung, daß die in diesen Formeln geführte unabhängige Hilfsgröße $z = a \cdot x$ bei der Veränderung von v_0 , c_n oder $\cos\varphi$ um die kleinen Beträge Δv_0 , Δc_n bzw. $\Delta (\cos\varphi)$ ungeändert bleibe.

Dann gilt z = const oder

$$\ln z = \ln c_n + (n-2) \ln v_0 - \ln \cos \varphi + \ln (A + n - 2) + \ln x$$

und somit nach Differentiation, wenn die Differentiale durch Differenzen ersetzt werden:

$$\frac{\Delta z}{z} = 0 = \frac{\Delta c_n}{c_n} + (n-2) \cdot \frac{\Delta v_0}{v_0} - \frac{\Delta (\cos \varphi)}{(\cos \varphi)} + \frac{\Delta x}{x}$$

Dabei ist vorausgesetzt, daß eine Änderung von A mit c_n , v_0 und φ vernachlässigt werden darf. Das hat zur Folge, daß auch ν (Formel 150) und somit die Funktionen B(z), J(z), V(z) und D(z) ungeändert bleiben.

Man hat also weiter:

$$\ln t = \ln x - \ln v_0 - \ln \cos \varphi + \ln D(z)$$

oder

$$\frac{\Delta t}{t} = \frac{\Delta x}{x} - \frac{\Delta v_0}{v_0} - \frac{\Delta(\cos\varphi)}{\cos\varphi}$$

Aus Formel (115) erhält man

 $\ln (x \cdot \operatorname{tg} \varphi - y) = 2 \ln x - 2 \ln v_0 - 2 \ln \cos \varphi + \ln \left| \frac{g}{2} \cdot B(z) \right|$ oder

$$\Delta x \cdot \operatorname{tg} \varphi + x \cdot \frac{\Delta \varphi}{\cos^2 \varphi} - \Delta y$$

= $(x \cdot \operatorname{tg} \varphi - y) \cdot \left[2 \cdot \frac{\Delta x}{x} - 2 \frac{\Delta v_0}{v_0} - 2 \frac{\Delta (\cos \varphi)}{\cos \varphi} \right].$

Aus der Formel für $\frac{Az}{z}$ folgt:

$$\frac{\Delta x}{x} = -\frac{\Delta c_n}{c_n} - (n-2) \cdot \frac{\Delta v_0}{v_0} + \frac{\Delta (\cos \varphi)}{\cos \varphi}$$

Setzt man dies in die Gleichungen für Δt und Δy ein, so folgt das System von Verbesserungsgleichungen:

(209) $\frac{\Delta x}{x} = -\frac{\Delta c_n}{c_n} - (n-2) \cdot \frac{\Delta v_0}{v_0} + \frac{\Delta(\cos\varphi)}{\cos\varphi};$ $\frac{\Delta t}{t} = -\frac{\Delta c_n}{c_n} - (n-1) \frac{\Delta v_0}{v_0};$ $\Delta y = \frac{\Delta c_n}{c_n} \cdot [x \cdot \operatorname{tg} \varphi - 2y]$ $+ \frac{\Delta v_0}{v_0} \cdot [n \cdot x \cdot \operatorname{tg} \varphi - 2(n-1) \cdot y]$ $- (x \cdot \operatorname{ctg} \varphi + 2y) \cdot \frac{\Delta(\cos\varphi)}{\cos\varphi}.$

Dieses System ist zuerst von Stübler⁽⁹⁷⁾ angegeben worden. O. v. Eberhard⁽⁹⁸⁾ und Stanke⁽¹⁰⁰⁾ haben die Zulässigkeit dieser Formeln für beliebige Flugbahnen geprüft; sie kommen zu dem Ergebnis, daß die Formeln nur für Überschlagsrechnungen in Frage kommen und stets mit einem mittleren Widerstandsexponenten n(v) angewandt werden müssen, der der betrachteten Flugbahn im Hinblick auf den durchlaufenen Geschwindigkeitsbereich am besten angepaßt ist.

Handelt es sich um Ziele in der Mündungswaagerechten, die bei Veränderung von c_n , v_0 oder φ getroffen werden sollen, d. h. handelt

Abb. 27. Umrechnung der Störungen auf den Endpunkt der Flugbahn

es sich um Berechnung der Schußweitenänderung ΔX , so führt folgende Überlegung zum Ziel: Für die ungestörte Bahn ist im Auftreffpunkt in der Mündungswaagerechten x = X, y = 0 (Abb. 27). Die Änderungen Δx und Δy ergeben sich aus (209) und verlegen diesen Flugbahnpunkt Z nach Z' (Abb. 27). Dann ist die Schußweiten-

änderung $\varDelta X$ in der Mündungswaagerechten gegeben durch

 $\Delta X = \Delta x + \Delta y \cdot \operatorname{ctg} \omega,$

wie aus Abb. 27 abgelesen wird; dabei ist angenommen, daß der Fallwinkel ω nicht geändert wird. Führt man in diese Formel die Ausdrücke aus (209) ein, so entsteht, da y = 0:

(210)
$$\frac{\Delta X}{X} = \frac{\Delta c_n}{c_n} \cdot \frac{\operatorname{tg} \varphi - \operatorname{tg} \omega}{\operatorname{tg} \omega} + \frac{\Delta v_0}{v_0} \cdot \frac{n \cdot \operatorname{tg} \varphi - (n-2) \cdot \operatorname{tg} \omega}{\operatorname{tg} \omega} + \frac{\Delta (\cos \varphi)}{\cos \varphi} \cdot (1 - \operatorname{ctg} \varphi \cdot \operatorname{ctg} \omega)$$

Beispiel. Schußweitenänderung der Musterbahn bei Abweichungen von a) + 1% in der v_0 , b) + 10% des Luftgewichts, d. h. des c-Wertes.

a) $\frac{\partial v_0}{v_0} = 0.01; \ n \sim 3.1, \ da \ v_0 = 381.6 \ m/s, \ v_e = 249.1 \ m/s, \ also n(v_0) = 3.21 \ bzw. \ n(v_e) = 3.00.$ Somit $\frac{\partial x}{x} = -0.01 \cdot (3.1-2); \ \Delta x = -94.3 \ m.$ Entsprechend $\Delta y = 233.8 \ m.$ Schließlich $\Delta X = \Delta x + \Delta y \cdot \operatorname{ctg} \omega = +100 \ m.$ b) $\frac{\partial c_n}{\partial x} = 0.10; \ \text{somit} \ \Delta x = -857.1 \ m; \ \Delta y = 757.0 \ m \ und \ schließlich \ \Delta X = -227 \ m.$ Es ist klar, daß die Genauigkeit der Formeln (209) noch gesteigert werden könnte, wenn der Abhängigkeit der auftretenden Größen A und ν von v_0 , c_n und φ Rechnung getragen würde. Da aber der Anwendungsbereich solcher Näherungsformeln sowieso beschränkt ist, steht der mögliche Gewinn an Genauigkeit in keinem Verhältnis zur Komplizierung der Formeln. Für kleine Anfangsgeschwindigkeiten (bis zu $v_0 \sim 280$ m/s) und Flachbahnen reichen im allgemeinen die Formeln (209); bei beliebigen Anfangsgeschwindigkeiten muß ein genaueres Verfahren herangezogen werden, das wir im folgenden Abschnitt schildern wollen.

§ 26. Strenge Formeln für beliebige Störungen

a) Allgemeiner Ansatz

Um genauere Formeln für die Flugbahnstörungen zu erhalten, knüpfen wir an Entwicklungen und Untersuchungen an, die von Schwarzschild⁽⁹⁹⁾ und in neuester Zeit von Stanke⁽¹⁰⁰⁾ in übersichtlichster Weise durchgeführt worden sind. Dem Zweck und Aufbau des vorliegenden Buches entsprechend gehen wir bei der Ableitung jedoch einen etwas anderen Weg als die genannten Autoren und leiten die Ergebnisse auf der Grundlage weniger allgemeiner Ausgangsannahmen her.

Die Differentialgleichungen (45) der Bewegung werden mit den neuen Veränderlichen bzw. Abkürzungen

$$\frac{d\vartheta}{\cos\vartheta} = dz; \quad \frac{d(v\cdot\cos\vartheta)}{v\cdot\cos\vartheta} = du; \quad v\cdot\sqrt{\frac{T_0}{T(y)}} = w = \frac{e^u}{\cos\vartheta}\cdot\sqrt{\frac{T_0}{T(y)}};$$
$$\frac{\sin\vartheta}{g\cdot\cos^2\vartheta} = \psi(z)$$

transformiert in die folgenden

(211)
$$\begin{cases} \frac{du}{dz} = C(y) \cdot f(w); \\ \text{wo} \quad C(y) = \frac{c}{g} \cdot \delta(y) \cdot \frac{T(y)}{T_0}, \quad w = \frac{e^u}{\cos \vartheta} \cdot \sqrt{\frac{T_0}{T(y)}} \\ \frac{dy}{dz} = -e^{2u} \cdot \psi(z); \quad \frac{dx}{dz} = -\frac{e^{2u}}{g} \cdot \operatorname{Coj} z; \\ \frac{dt}{dz} = -\frac{e^u}{g} \cdot \operatorname{Coj} z. \end{cases}$$

Nun bewirkt eine Änderung der Anfangsbedingungen von u oder z, d. h. eine Änderung der Anfangselemente v_0 oder φ , eine Änderung dieser und der übrigen Elemente auf dem ganzen Flugbahnbogen. Das gleiche ist der Fall, wenn in (211) noch eine Störungsfunktion $h_n(z)$ zu $C(y) \cdot f(w)$ hinzutritt. — Wir vergleichen nun Flugbahnpunkte gleicher Neigung, also Punkte auf der ungeänderten und geänderten Bahn, die zu gleichen Werten von z gehören. Die infolge der Störung anzubringenden Korrekturen seien u_n , y_n , x_n , t_n , $(z_n$ ist auf Grund der gemachten Voraussetzung Null). Dann lauten die Differentialgleichungen der Bewegung für die gestörte Bahn im allgemeinsten Falle

(212)
$$\begin{pmatrix} \frac{d(u+u_n)}{dz} = C(y+y_n) \cdot f(w+w_n) + h_n(z);\\ \frac{d(y+y_n)}{dz} = -e^{2(u+u_n)} \cdot \psi(z);\\ \frac{d(x+x_n)}{dz} = -\frac{e^{2(u+u_n)}}{g} \cdot \mathfrak{Coj} z;\\ \frac{d(t+t_n)}{dz} = -\frac{e^{u+u_n}}{g} \cdot \mathfrak{Coj} z. \end{cases}$$

In diesen Gleichungen bezeichnen somit die Elemente ohne den Index n die Elemente der ungestörten Bewegung. — Die rechten Seiten dieser Gleichung entwickeln wir nunmehr nach dem Satz von Taylor^(VI):

$$C(y + y_n) = C(y) + y_n \cdot C'(y) + \cdots$$
$$f(w + w_n) = f(w) + w_n \cdot f'(w) + \cdots$$
$$e^{u + u_n} = e^u \cdot [1 + u_n + \cdots]; \quad e^{2(u + u_n)} = e^{2u} \cdot [1 + 2u_n + \cdots].$$

Setzt man dieses in (212) ein, berücksichtigt die Beziehungen (211) und vernachlässigt alle quadratischen und höheren Glieder in y_n , w_n , x_n , u_n , t_n , so folgt zunächst

$$\begin{aligned} \frac{du_n}{dz} &= y_n \cdot C'(y) \cdot f(w) + w_n \cdot C(y) \cdot f'(w) + h_n(z) \\ &= C(y) \cdot f(w) \left[y_n \cdot \frac{C'(y)}{C(y)} + w_n \cdot \frac{n(w)}{w} \right] + h_n(z). \end{aligned}$$

206

Nun ist aber

$$w + w_n = \frac{e^{u+u_n}}{\cos\vartheta} \sqrt{\frac{T_0}{T(y) + y_n \cdot T'(y)}}$$

$$\approx \frac{e^u}{\cos\vartheta} \cdot \sqrt{\frac{T_0}{T(y)}} \cdot \frac{1+u_n}{1+\frac{1}{2} y_n \cdot \frac{T'(y)}{T(y)}} \approx w \cdot \left| 1+u_n - \frac{y_n}{2} \cdot \frac{T'(y)}{T(y)} \right|.$$

Somit also

(213)
$$\frac{du_n}{dz} = \frac{du}{dz} \cdot \left\{ u_n \cdot n(w) + y_n \cdot \left[\frac{C'(y)}{C(y)} - \frac{n(w)}{2} \cdot \frac{T'(y)}{T(y)} \right] \right\} + h_n(z).$$

Wir machen jetzt die besondere Annahme, daß der Temperaturverlauf durch den linearen Ausdruck (17)

$$T(y) = T_b - A \cdot y$$
 $(T_b = \text{Bodentemperatur})$

dargestellt werden kann. Dann gilt $\delta(y) = \delta_0 \cdot \left(1 - \frac{\Lambda}{T_b} \cdot y\right)^{\frac{1}{R \cdot A} - 1}$ (R = Gaskonstante) und daher mit der Abkürzung $\frac{1}{R \cdot A} = a$:

$$\begin{split} C(y) &= \frac{c}{g} \cdot \frac{\delta_0}{T_0} \cdot \frac{(T_b - \Lambda \cdot y)^a}{T_b^{a-1}} ; \quad \frac{T'(y)}{T(y)} = -\frac{\Lambda}{T_b - \Lambda \cdot y} ; \\ & \frac{C'(y)}{C(y)} = -\frac{a \cdot \Lambda}{T_b - \Lambda \cdot y} . \end{split}$$

Schließlich erhalten wir also das System linearer Differentialgleichungen:

(214)
$$\begin{array}{c} \frac{du_n}{dz} = \frac{du}{dz} \cdot \left[u_n \cdot n(w) + y_n \cdot \left| \frac{n(w)}{2} - a \right| \cdot \frac{\Lambda}{T_b - \Lambda \cdot y} \right] \\ + h_n(z); \\ \frac{dy_n}{dz} = 2 \frac{dy}{dz} \cdot u_n; \quad \frac{dx_n}{dz} = 2 \frac{dx}{dz} \cdot u_n; \quad \frac{dt_n}{dz} = \frac{dt}{dz} \cdot u_n \end{array}$$

Ein Wort muß noch über die Anfangsbedingungen dieses Systems linearer Differentialgleichungen gesagt werden:

a) Die Einbeziehung einer störenden Kraft, deren Vorhandensein durch $h_n(z)$ ausgedrückt wird, ändert die Anfangs-

bedingungen von u, x, y, t, z nicht; somit sind in diesem Falle die Anfangsbedingungen $u_n = y_n = x_n = t_n = 0$ für $z = z_0$.

b) Ist $h_n(z) = 0$, d. h. ist keine störende Kraft vorhanden, sondern ändert sich nur eine der Anfangsbedingungen für u oder zum ∂u_0 bzw. ∂z_0 , dann gelten die Anfangsbedingungen

$$z = z_0: \quad u_n = \partial u_0, \quad x_n = y_n = t_n = 0, \quad \text{bzw.}$$

$$z = z_0: \quad u_n = -\left(\frac{d u}{d z}\right)_0 \cdot \partial z_0; \quad x_n = -\left(\frac{d x}{d z}\right)_0 \cdot \partial z_0;$$

$$y_n = -\left(\frac{d y}{d z}\right)_0 \cdot \partial z_0; \quad t_n = -\left(\frac{d t}{d z}\right)_0 \cdot \partial z_0.$$

b) Sonderfälle bestimmter Störungen. Die Darrieusschen Formeln

Wir wollen nunmehr einige Sonderfälle betrachten und insbesondere zunächst unser Augenmerk auf die Störungsfunktion $h_n(z)$ richten.

1. Der ballistische Beiwert c ändere sich um den sehr kleinen Betrag ∂c . Dann muß $C(y) \cdot f(w)$ ersetzt werden durch $C(y) \cdot f(w) \left(1 + \frac{\partial c}{c}\right)$, und durch Vergleich mit (211) folgt sofort für diesen Fall:

(215)
$$h_n(z) = \frac{\partial c}{c} \cdot \frac{du}{dz}.$$

Da c sich um den sehr kleinen Betrag ∂c ändert, verändern sich auch u, y, x, t nur um die sehr kleinen Beträge $\partial u, \partial y, \partial x, \partial t$, so daß also $u_n = \partial u, y_n = \partial y, x_n = \partial x, t_n = \partial t$ wird. Dividiert man schließlich (214) auf beiden Seiten durch $\frac{\partial c}{c} = \partial (\ln c)$, so folgt mit den Bezeichnungen

$$\frac{\partial u}{\partial(\ln c)} = U_c; \quad \frac{\partial y}{\partial(\ln c)} = Y_c; \quad \frac{\partial x}{\partial(\ln c)} = X_c; \quad \frac{\partial t}{\partial(\ln c)} = T_c;$$

$$\begin{pmatrix} \frac{dU_c}{dz} = \frac{du}{dz} \cdot \left| U_c \cdot n(w) + Y_c \cdot \left\{ \frac{n(w)}{2} - a \right\} \cdot \frac{\Lambda}{T_b - \Lambda \cdot y} + 1 \right]; \\ \frac{dY_c}{dz} = 2 \frac{dy}{dz} \cdot U_c; \quad \frac{dX_c}{dz} = 2 \frac{dx}{dz} \cdot U_c; \quad \frac{dT_c}{dz} = \frac{dt}{dz} \cdot U_c \\ \text{mit den Anfangsbedingungen } U_c = Y_c = X_c = T_c = 0 \text{ für } z = z_0. \end{cases}$$

2. Die Bodentemperatur T_b ändere sich um den kleinen Betrag ∂T_b . Dann ist zu ersetzen $C(y) \cdot f(w)$ durch

$$\frac{c}{g} \cdot \frac{\delta_0}{T_0} \cdot \frac{(T_b + \partial T_b - \Lambda \cdot y)^a}{(T_b + \partial T_b)^{a-1}} \cdot f\left(v \cdot \sqrt{\frac{T_0}{T_b + \partial T_b - \Lambda \cdot y}}\right)$$

Entwickelt man dies nach dem Satz von Taylor, so entsteht in diesem Falle:

$$h_n(z) = \frac{\partial T_b}{T_b} \cdot \frac{du}{dz} \cdot \left| \frac{T_b}{T_b - A \cdot y} \cdot \left\{ a - \frac{n(w)}{2} \right\} - a + 1 \right|.$$

Mit $\frac{\partial T_b}{T_b} = \partial (\ln T_b)$ und $\frac{u_n}{\partial (\ln T_b)} = \frac{\partial u}{\partial (\ln T_b)} = U_T$ usw. wird wie oben

(217)
$$\begin{pmatrix} \frac{dU_T}{dz} = \frac{du}{dz} \cdot \left[U_T \cdot n(w) + Y_T \left\{ \frac{n(w)}{2} - a \right\} \cdot \frac{A}{T_b - A \cdot y} \\ + \frac{T_b}{T_b - A \cdot y} \cdot \left\{ a - \frac{n(w)}{2} \right\} - a + 1 \right] \quad \text{usw.} \\ \text{mit den Anfangsbedingungen } U_T = Y_T = X_T = T_T = 0$$

mit den Anfangsbedingungen $U_T = Y_T = X_T = T_T = 0$ für $z = z_0$

Die entsprechenden Gleichungen gelten für Y_T , X_T und T_T . 3. Es ändere sich v_0 um ∂v_0 , d. h. u_0 um ∂u_0 . Dann ist $h_n(z) = 0$; mit $\frac{\partial u}{\partial u_0} = U_v$; $\frac{\partial y}{\partial u_0} = Y_v$ usw. entsteht (218) $\left| \begin{array}{c} \frac{dU_v}{dz} = \frac{du}{dz} \cdot \left[U_v \cdot n(w) + Y_v \cdot \left\{ \frac{n(w)}{2} - a \right\} \cdot \frac{\Lambda}{T_b - \Lambda \cdot y} \right]; \\ \frac{dY_v}{dz} = 2 \frac{dy}{dz} \cdot U_v$ usw. mit den Anfangsbedingungen $U_v = 1$; $Y_v = X_v = T_v = 0$ für $z = z_0$.

4. Die Differentialgleichungen (216), (217), (218) gestatten nunmehr, bestimmte Zusammenhänge zwischen U_c , U_T , U_v ; Y_c , Y_T , Y_v ;... herzustellen. Die Linearität der Differentialgleichungen und die besondere Gestalt der Störungsglieder $h_n(z)$ legen die Annahme linearer Zusammenhänge zwischen den erwähnten Funktionen nahe. Wir machen daher folgenden Ansatz

Athen, Ballistik

(219)
$$\begin{array}{c} U_T = a_1 + \beta_1 \cdot U_c + \gamma_1 \cdot U_v; \quad Y_T = a_2 + \beta_2 \cdot Y_c + \gamma_2 \cdot Y_v \\ X_T = a_3 + \beta_3 \cdot X_c + \gamma_3 \cdot X_v; \quad T_T = a_4 + \beta_4 \cdot T_c + \gamma_4 \cdot T_v \end{array}$$

Darin sind a_1, a_2, a_3, a_4 noch zu bestimmende Funktionen, während die β_i und γ_i von vornherein als konstant angesehen werden dürfen. Geht man also mit den Ausdrücken (219) in die Differentialgleichungen (217) hinein und vergleicht sie dann mit (216) und (218) und deren Anfangsbedingungen, so folgt, daß die Beziehungen (219) nur bestehen können, wenn

(220)
$$\begin{array}{c} a_1 = \frac{1}{2}; & a_2 = y; & a_3 = x; & a_4 = \frac{t}{2}; \\ \beta_1 = 1; & \beta_2 = 1; & \beta_3 = 1; & \beta_4 = 1; \\ \gamma_1 = -\frac{1}{2}; & \gamma_2 = -\frac{1}{2}; & \gamma_3 = -\frac{1}{2}; & \gamma_4 = -\frac{1}{2} \end{array}$$

gesetzt wird.

Die Formeln (219) und (220) bilden zusammen die von Stanke⁽¹⁰⁰⁾ gefundenen "verallgemeinerten Darrieusschen Formeln", die für beliebige Flugbahnpunkte gelten. Die von Darrieus⁽⁴⁹⁾ selber ermittelten Formeln gelten nur für die Mündungswaagerechte und können ohne Schwierigkeit aus den vorstehenden abgeleitet werden: Die Formeln (219) mit (220) gelten für festgehaltenes z. Zweckmäßiger ist es, y festzuhalten. Dann ist, ähnlich wie wir es bereits oben (Formel 210) gesehen haben, für einen beliebigen Flugbahnpunkt

$$(221) \begin{vmatrix} \Delta x = (X_T - Y_T \cdot \operatorname{ctg} \vartheta) \cdot \frac{\partial T_b}{T_b} & \text{und} \\ \Delta t = \left(T_T - Y_T \cdot \frac{1}{v \cdot \sin \vartheta} \right) \cdot \frac{\partial T_b}{T_b} , \\ \text{oder abgekürzt geschrieben:} \\ \Delta x = C_T \cdot \frac{\partial T_b}{T_b} ; \quad \Delta t = \Gamma_T \cdot \frac{\partial T_b}{T_b} . \end{cases}$$

Die obigen verallgemeinerten Darrieusschen Formeln gehen also über in:

210

$$(222) \begin{vmatrix} C_T = x - y \cdot \operatorname{ctg} \vartheta - \frac{C_v}{2} + C_c; \\ \Gamma_T^{\bullet} = \frac{t}{2} - \frac{y}{v \cdot \sin \vartheta} - \frac{\Gamma_v}{2} + \Gamma_c; & \text{hierin ist} \\ C_v = X_v - Y_v \cdot \operatorname{ctg} \vartheta; & C_c = X_c - Y_c \cdot \operatorname{ctg} \vartheta; \\ \Gamma_v = T_v - \frac{Y_v}{v \cdot \sin \vartheta}; & \Gamma_c = T_c - \frac{Y_c}{v \cdot \sin \vartheta}, \end{vmatrix}$$

wo entsprechend dem Ausdruck C_T die Ausdrücke C_v , C_c , Γ_v , Γ_c also die Bedeutung $\frac{\partial x}{\partial u_0}$, $\frac{\partial x}{\partial (\ln c)}$, $\frac{\partial t}{\partial u_0}$, $\frac{\partial t}{\partial (\ln c)}$ für festgehaltenes y haben. Setzt man in (222) y = 0, so entstehen die erstmalig von Darrieus für die Mündungswaagerechte abgeleiteten Beziehungen. Allgemein gilt somit

(223)
$$\begin{cases} \Delta x = X_T \cdot \frac{\Delta T_b}{T_b} + X_c \cdot \frac{\Delta c}{c} + X_v \cdot \frac{\Delta v_0}{v_0} \text{ (festgehaltenes } z\text{);} \\ \Delta x = C_T \cdot \frac{\Delta T_b}{T_b} + C_c \cdot \frac{\Delta c}{c} + C_v \cdot \frac{\Delta v_0}{v_0} \text{ (festgehaltenes } y\text{).} \end{cases}$$

Die entsprechenden Gleichungen gelten auch für die übrigen Elemente und für den Fall, daß nicht z, sondern y festgehalten wird.

§ 27. Anwendung auf praktisch vorkommende Fälle

Mit den vorstehend abgeleiteten Beziehungen sind wir nunmehr in der Lage, die in der Praxis auftretenden Flugbahnstörungen zu erfassen.

Die Schußtafeln sind aufgestellt für bestimmte Normalwerte der Anfangsgeschwindigkeit, des Geschoßgewichts, der Bodenwerte der Lufttemperatur und des Luftgewichts, für Windstille, für eine bestimmte Pulvertemperatur und für eine gewisse Schußbelastung des Rohres. Beim Schießen treten zuweilen Abweichungen von den Normalwerten auf, die im folgenden besprochen werden sollen.

a) Änderung der Anfangsgeschwindigkeit

Die Änderung der Anfangsgeschwindigkeit ist z. B. bedingt durch Verwendung kälteren oder wärmeren Pulvers, als der schußtafelmäßigen Normaltemperatur entspricht. Der Einfluß der Pulver-

211

temperatur wird empirisch bestimmt und in der Schußtafel angegeben. — Mit wachsender Schußzahl wird das Geschützrohr "ausgeschossen": die Anfangsgeschwindigkeit sinkt ab. Die Größe dieses Unterschiedes gegen den schußtafelmäßigen Normalwert wird für jedes Rohr angegeben. — Weicht das Geschoßgewicht vom schußtafelmäßigen Geschoßgewicht ab, so tritt ebenfalls eine Veränderung der Anfangsgeschwindigkeit ein. Nimmt man an, daß die Energie des Pulvers gleichbleibend ausgenutzt wird, so folgt

$$\frac{P}{2g} \cdot v_0^2 = \text{const} \quad (P = \text{Geschoßgewicht})$$

und somit

(224)
$$\frac{\varDelta v_0}{v_0} = \frac{1}{2} \frac{\varDelta P}{P}.$$

Besser ist es, den Faktor $\frac{1}{2}$ durch einen empirisch zu bestimmenden Faktor μ zu ersetzen. Dieser liegt erfahrungsgemäß zwischen 0,3 und 0,5. — In den Schußtafeln wird die Änderung der Anfangsgeschwindigkeit in "Stufen" angegeben. Dabei bedeutet eine Stufe $\frac{1}{3}$ % der Anfangsgeschwindigkeit, d. h. für $v_0 = 300$ m/s ist eine Stufe gleich 1 m/s.

b) Änderung des ballistischen Beiwertes

Der ballistische Beiwert ist, wie aus seiner Definition hervorgeht u. a. abhängig von: Kaliber, Geschoßgewicht und Luftgewicht; er ist proportional dem Ausdruck $\frac{R^2 \cdot \delta}{P}$. Somit ist die Änderung von *c* durch Änderung der erwähnten Größen in folgender Weise bestimmt:

(225)
$$\frac{\Delta c}{c} = \frac{\Delta \delta_B}{\delta_B} + 2 \frac{\Delta R}{R} - \frac{\Delta P}{P} .$$

Der c-Wert muß geändert werden, wenn das Tagesluftgewicht δ_B beim Schießen nicht mit dem schußtafelmäßigen Luftgewicht δ_0 übereinstimmt. Dasselbe gilt für Abweichungen von den schußtafelmäßigen Normalwerten der übrigen Elemente, also Geschoßgewicht und Kaliber.

c) Windeinfluß

Die Erfassung des Windeinflusses kann auf eine Änderung der Anfangsgeschwindigkeit und des Abgangswinkels zurückgeführt werden.

1. Längswind. Wir nehmen an, daß in der Schußrichtung x ein konstanter Längswind mit der Geschwindigkeit $(+ w_x)$ wehe. Nunmehr werde ein Koordinatensystem (x_r, y_r) betrachtet, das sich horizontal mit der Windgeschwindigkeit bewege und für das infolgedessen Windstille herrsche. Im Augenblick des Abschusses möge x_r mit x und y_r mit y zusammenfallen. Nach Ablauf der Zeit thängen also die Koordinaten (x_r, y_r) bzw. (x, y) eines Punktes so zusammen:

$$(226) x = x_r + w_x \cdot t; \quad y = y_r.$$

Für einen Beobachter, der mit dem (x_r, y_r) -System fest verbunden ist, beschreibt das Geschoß eine "Flugbahn bei Windstille". Allerdings mißt er infolge seiner horizontalen Eigenbewegung alle horizontalen Geschwindigkeiten um den Betrag $(-w_x)$ verändert gegenüber den Messungen eines ruhenden Beobachters an der gleichen Bahn. Speziell für den Abgangspunkt gilt also

(227)
$$v_0 \cdot \cos \varphi - w_x = v_r \cdot \cos \varphi_r; \quad v_0 \cdot \sin \varphi = v_r \cdot \sin \varphi_r.$$

Dabei sind die mit dem Index r versehenen Elemente bezogen auf (x_r, y_r) .

Man bestimmt aus (227):

(228)
$$v_r^2 = v_0^2 - 2w_x \cdot v_0 \cdot \cos \varphi + w_x^2; \quad \operatorname{tg} \varphi_r = \frac{v_0 \cdot \sin \varphi}{v_0 \cdot \cos \varphi - w_x}.$$

Hieraus lassen sich $\frac{\Delta v_0}{v_0} = \frac{v_r - v_0}{v_0}$ und $\Delta \varphi = \varphi_r - \varphi$ unschwer berechnen. Nimmt man w_x als klein gegenüber v_0 an, so folgen aus (228) die Beziehungen:

$$\frac{v_r}{v_0} = \sqrt{1 - 2 \frac{w_x}{v_0} \cdot \cos \varphi + \left(\frac{w_x}{v_0}\right)^2} \sim 1 - \frac{w_x}{v_0} \cdot \cos \varphi,$$

in $\left(\frac{w_x}{v_0}\right)^2 \ll 1;$ fermer ist

wenn

$$\operatorname{tg} \varphi_{\mathbf{r}} = \operatorname{tg} \varphi \cdot \frac{1}{1 - \frac{w_{\mathbf{z}}}{v_{\mathbf{0}} \cdot \cos \varphi}} \sim \operatorname{tg} \varphi \cdot \left(1 + \frac{w_{\mathbf{z}}}{v_{\mathbf{0}} \cos \varphi}\right),$$

also $\operatorname{tg} \varphi_r - \operatorname{tg} \varphi = \varDelta (\operatorname{tg} \varphi) = \frac{\varDelta \varphi}{\cos^2 \varphi} = \frac{w_x}{v_0} \cdot \frac{\sin \varphi}{\cos^2 \varphi}.$

Wir erhalten somit die Näherungsformeln:

(229)
$$\frac{\Delta v_{\mathbf{n}}}{v_{\mathbf{0}}} \approx -\frac{w_{\mathbf{x}}}{v_{\mathbf{0}}} \cos \varphi; \quad \Delta \varphi \approx \frac{w_{\mathbf{x}}}{v_{\mathbf{0}}} \cdot \sin \varphi.$$

Das sind also Änderungen, deren Einfluß auf die ungestörte Schußweite berücksichtigt werden muß, so daß schließlich für den Windeinfluß die Verbesserungsformel

(230)
$$X_{w} = X_{r} + w_{x} \cdot T_{r} = X_{n} + w_{x} \cdot \left\{ T_{r} - \frac{\partial X_{n}}{\partial v_{n}} \cdot \cos \varphi + \frac{\partial X_{n}}{\partial \varphi} \cdot \frac{\sin \varphi}{v_{0}} \right\}$$

folgt, in der X_w die Schußweite bei Wind, X_r die Windbahn im bewegten System (x_r, y_r) und X_n die ungestörte Schußweite bedeuten. Die Elemente $\frac{\partial X_n}{\partial v_0}$ bzw. $\frac{\partial X_n}{\partial \varphi}$ sind in der bereits oben (§§ 25, 26) geschilderten Weise zu berechnen. Für viele Fälle werden die angenäherten Beziehungen (209) mit der weiteren Näherung $T_r = T_n$ genügen. Weht der Wind entgegen der Schußrichtung, so ist w_x negativ zu nehmen.

2. Seitenwind. Bei Seitenwind liegen die Verhältnisse ähnlich. Wir bezeichnen einen solchen Wind als positiv, wenn er, in Schußrichtung gesehen, von links nach rechts gegen die Schußebene weht. Relative Windstille wird erreicht, wenn ein Beobachter sich im Sinne der Windgeschwindigkeit w_z seitlich bewegt. Für diesen Beobachter erscheint demnach das Geschoß mit der Geschwindigkeit v_r :

$$(231) v_r^2 = v_0^2 + w_z^2$$

und, da die Vertikalkomponente $v_0 \cdot \sin \varphi = v_r \cdot \sin \varphi_r$ erhalten bleibt, unter dem Abgangswinkel φ_r :

(231 a)
$$\operatorname{tg} \varphi_r = \frac{v_0 \cdot \sin \varphi}{\sqrt{v_0^2 \cdot \cos^2 \varphi + w_z^4}}$$

abgefeuert (Abb. 28). Gleichzeitig erscheint die Schußebene gegen die Windrichtung um den Winkel ψ von der Abschußebene abgedreht; dabei ist also

Abb. 28. Relativbewegung bei Seitenwind

Man hat, wenn die auf den mitbewegten Beobachter bezogenen Elemente mit dem Index r bezeichnet werden (Abb. 28) für die Elemente (x_w, y_w) der durch Seitenwind gestörten Bahn:

(232)
$$x_w = x_r \cdot \cos \psi; \quad y_w = y_r; \quad z_w = w_z \cdot t_r - x_r \cdot \sin \psi.$$

Die Flugzeit t_r kann im allgemeinen durch die Flugzeit t_n der ungestörten Bahn ersetzt werden. Ist x_n die Abszisse der ungestörten Bahn, so ist

$$x_r = x_n + \frac{\partial x}{\partial v_0} \cdot \varDelta v_0 + \frac{\partial x}{\partial \varphi} \cdot \varDelta \varphi,$$

wobei man ähnlich wie oben ableitet:

$$\Delta v_0 = \frac{w_z^2}{2v_0}; \quad \Delta \varphi = -\frac{1}{2} \left(\frac{w_z}{v_0}\right)^2 \cdot \operatorname{tg} \varphi.$$

Im allgemeinen genügt es, $\Delta \varphi = \Delta v_0 = 0$ und $\sin \psi = \operatorname{tg} \psi$ (da ψ sehr klein) anzunehmen, womit dann die nur für sehr steile Bahnen nicht mehr genügend genaue Seitenwindformel

(232 a)
$$z_w = w_z \cdot \left| T - \frac{X}{v_0 \cdot \cos \varphi} \right|$$

folgt.

d) Höhenveränderliche Störungen (Wind und Luftgewicht)

In Wirklichkeit ist die Annahme eines Windes konstanter Richtung und Stärke in allen Höhenschichten der vom Geschoß durchflogenen Lufthülle so gut wie nie erfüllt. Vielmehr wechselt der Wind von Höhenschicht zu Höhenschicht seine Richtung und Geschwindigkeit. Für diesen Fall gelten die abgeleiteten Windformeln nicht mehr ohne weiteres. — Etwas Ähnliches gilt auch für das Luftgewicht. Die Abweichungen vom Normalwert am Boden folgen in der wirklichen Lufthülle fast nie den der Rechnung zugrunde gelegten Formeln für die Höhenveränderlichkeit des Luftgewichts. Um aber auch für diese Fälle mit den obigen einfachen Korrekturformeln auskommen zu können, sind eine Reihe von Näherungsverfahren im Gebrauch, deren Anwendung besonders für den Artilleristen von großer Wichtigkeit ist. Man kann nämlich einen konstanten Mittelwert für die Windrichtung und -geschwindigkeit in den verschiedenen Höhenschichten bilden, der dieselbe Schußweitenänderung zur Folge hat wie der höhenveränderliche Wind.

Einen ähnlichen Mittelwert kann man für das Luftgewicht ermitteln. Legt man nämlich der Rechnung einen bestimmten Luftgewichtsverlauf mit der Höhe (Normalverlauf), ausgehend von einem Normalwert des Bodenluftgewichts, zugrunde (z. B. Everlingsche Verteilung), so gehört umgekehrt zu jedem Wert des Luftgewichts in einer bestimmten Höhe ein bestimmtes Bodenluftgewicht. Dieses ist für die verschiedenen Höhen verschieden, wenn der praktisch festgestellte Luftgewichtsverlauf nicht mit dem Normalverlauf übereinstimmt. Es gibt aber dann einen konstanten Mittelwert aller dieser verschiedenen Bodenwerte, der die gleiche Schußweitenänderung hervorruft, wie der vom Normalverlauf abweichende tatsächliche Luftgewichtsverlauf. Diese konstanten Mittelwerte werden als "ballistischer Wind" bzw. als "ballistisches Luftgewicht" bezeichnet. Ihre Ermittlung soll im folgenden behandelt werden, wobei wir uns allerdings auf einige wenige der im Gebrauch befindlichen Verfahren beschränken.

Wind. Betrachtet man die Zeitdauer, während der das Geschoß sich in einer bestimmten Höhenschicht aufhält, so wird der Windeinfluß um so größer sein, je länger diese Zeit ist. Nimmt man den Windeinfluß proportional dieser Zeit, so kann der ballistische Wind (w_b) durch den Mittelwert

$$w_b = \frac{1}{T} \cdot \int_0^T w \cdot dt$$

definiert werden, wobei T die Gesamtflugzeit, w der höhenveränderliche Wind und t die Flugzeit bedeuten. Bezeichnet man mit t_i (i = 1, 2, 3...) die Zeiten, während welcher das Geschoß sich in der *i*-ten Schicht befindet, so kann man obiges Integral durch den Näherungswert

$$w_b = \frac{1}{T} \cdot (w_1 \cdot t_1 + w_2 \cdot t_2 + \cdots)$$
ersetzen. Die Faktoren $\frac{t_i}{T}$, mit denen hiernach der Wind w_i der *i*-ten

Schicht multipliziert werden muß, können z. B. für den luftleeren Raum berechnet werden. In der Praxis nimmt man die Schichteneinteilung nun so vor, daß jede Schicht den gleichen Anteil zu w_b liefert. Infolgedessen werden diese Teilschichten von verschiedener Dicke. Für den luftleeren Raum verhalten sich die Schichtdicken wie 1:3:5:7 usw., wenn vom Gipfel an abwärts gerechnet wird; die Praxis hat gezeigt, daß bei Flugbahnen mit Gesamtflugzeiten bis zu 60 Sekunden eine Dreischichten-Einteilung zweckmäßig ist, bei der sich, vom Gipfel aus abwärts gerechnet, die Schichtdicken wie 2:5:7 verhalten. Um also den ballistischen Wind zu erhalten, wird zunächst die Gipfelhöhe nach der Haupt-

schen Formel $y_s = \frac{g}{8} \cdot T^2$ berechnet und in drei Schichten eingeteilt, die

entsprechend dem obigen im Dickenverhältnis 2: 5: 7 zueinander stehen. Für jede dieser drei Teilschichten wird ein Durchschnittswert des Windes aus dem Wetterbericht entnommen; das arithmetische Mittel aus den Windwerten der drei Schichten ergibt den ballistischen Wind*. Diese Rechnung wird für die Windgeschwindigkeit sowohl der Längswind- als auch der Querwindkomponente durchgeführt.

Beispiel: Flugzeit der Bahn 33,5 Sekunden; somit Gipfelhöhe etwa 1400 m; der Fortgang der Rechnung ist aus folgendem Schema ersichtlich (dabei haben wir uns auf nur eine Komponente beschränkt):

Höhe über dem Boden	Windgeschw. (m/s)	Schicht	Mittelwert für den Wind	Ballistischer Wind
1400 1300 1200	21 23 18	1. Schicht (2 Teile)	$ \begin{array}{c} \frac{1}{3} (21 + 23) \\ + 18) = 20,7 \end{array} $	
1100 1000 900 800 700	17 18 20 25 24	2. Schicht (5 Teile)	$ \frac{\frac{1}{6}(18+17)}{+18+20} \\ +25+24) \\ =20,3 $	$\frac{\frac{1}{3}(20,7+20,3)}{+13,6}$
600 500 400 300 200 100 0	20 13 12 14 9 8 9	3. Schicht (7 Teile)	$ \frac{\frac{1}{8}(24+20)}{+13+12} \\ +14+9) \\ +8+9) \\ =13,6 $	≈18m/s

Luftgewicht. Auch für die Abweichungen des Luftgewichts vom Normalverlauf hat man versucht, eine ähnliche Regel zu finden, wie wir sie eben für den Wind geschildert haben. Dabei soll sich eine Einteilung

^{*} Diesem Verfahren entspricht das von Kritzinger(14/144) vorgeschlagene, im Weltkrieg beim deutschen Heer eingeführte "Verfahren der Baltasekunden".

in 3 Zonen bewährt haben, deren Dicken sich wie 1:2:2 verhalten, vom Gipfel an abwärts gerechnet. Besser dürfte die folgende, von O. v. Eberhard⁽¹⁾ aufgestellte Erfahrungsregel sein: Zeichnet man die meteorologisch bestimmte Tagesluftgewichtskurve in ein Koordinatensystem (δ , y) ein, so schließt diese "anormale" ebenso wie die Normalkurve mit den beiden Koordinatenachsen und der zur Gipfelhöhe y_s gehörigen Ordinate ein "viereckiges" Flächenstück ein. Die Schußweitenänderung ist dann proportional dem Unterschied der beiden Flächeninhalte der "viereckigen" Flächen, die zur normalen und "anormalen" Luftgewichtsverteilung gehören. — Dieser Satz liefert praktisch genügend genaue Ergebnisse, er ist aber, worauf Stanke⁽¹⁰⁰⁾ hingewiesen hat, theoretisch nicht einwandfrei.

Cranz⁽¹⁾ hat den Vorschlag gemacht, für Näherungsbestimmungen den Wind bzw. das Luftgewicht heranzuziehen, das in der Höhe $\frac{2}{3} y_s$ der Flugbahn herrscht, da man aus dem Integral $y_d = \frac{1}{T} \cdot \int_0^T y \cdot dt$ für den luftleeren Raum die "durchschnittliche Flughöhe" $y_d = \frac{2}{3} y_s$ bestimmt; das ist also die Höhe, in der das Geschoß sich bezüglich der Zeit durchschnittlich befindet*.

§ 28. Andere Art der Störungsrechnung

Die im Vorstehenden dargestellten Rechnungen, besonders die des Abschnitts (§ 26) müssen für jede einzelne Flugbahn der gesamten Schar durchgeführt werden. Einfacher kann nach einem Verfahren des Verfassers⁽⁷⁹⁾ die Berechnung der Flugbahnstörungen im Falle einer ganzen Schar gestaltet werden, wie es bei der Schußtafelberechnung ja stets der Fall ist; hat man diese mit dem Ansatz der Formeln (169–173) bestimmt, so sind für eine Winkeländerung $\Delta \varphi$, die der Parameteränderung $\Delta \lambda$ entspricht, die gestörten Elemente gegeben durch

$$\begin{split} & \bar{w} = w_0 + (\lambda + \Delta \lambda) \cdot w_1 = w + \Delta \lambda \cdot w_1; \\ & \bar{\xi} = \xi + \Delta \lambda \cdot \xi_1; \quad \bar{\eta} = \eta + \Delta \lambda \cdot \eta_1. \end{split}$$

Auch die Einflüsse einer v_0 -Änderung Δv_0 und einer c-Wert-Änderung Δc sind ziemlich leicht zu erfassen. Wir betrachten zu-* Vahlen⁽⁴⁾ hat nachgewiesen, daß im lufterfüllten Raum dieser Wert bezüglich Wind- und Luftgewichtseinfluß auf $\frac{1}{2} y_s$ heruntergehen kann. nächst die Entwicklungsglieder w_0 , η_0 , ξ_0 . Bestimmt man aus der ungestörten Bewegung ein $t = \tau$, für welches $\dot{w}_0(\tau) = \dot{v}_0 = v_0 + \Delta v_0$, und sei dann $\dot{t} = (t - \tau)$ die.Zeitvariable der gestörten Bewegung, so gilt, wie man aus den Differentialgleichungen (164 hzw. 173) sofort nachweist:

$$(233) \begin{cases} \dot{w}_{0}(t) = \dot{w}_{0}(t); \quad \dot{\bar{\xi}}_{0}(t) = \frac{\dot{w}_{0}(\tau)}{\dot{\xi}_{0}(\tau)} \cdot \dot{\xi}_{0}(t); \quad \dot{\bar{\eta}}_{0} = \vec{w}_{0} - \dot{\bar{\xi}}_{0}; \\ \bar{w}_{0}(t) = w_{0}(t) - w_{0}(\tau); \quad \bar{\xi}_{0}(\bar{t}) = \frac{\dot{w}_{0}(\tau)}{\dot{\xi}_{0}(\tau)} \cdot [\xi_{0}(\tau) - \xi_{0}(\tau)]; \\ \bar{\eta}_{0} = \bar{w}_{0} - \bar{\xi}_{0}. \end{cases}$$

Für i = 0 ist also $\bar{v}_0 = v_0 + \Delta v_0 = \dot{w}_0(\tau)$, d. h. $\Delta v_0 = \dot{w}_0(\tau) - \dot{w}_0(0)$. Sind die Funktionen w_0 , ξ_0 , η_0 für $\delta = \text{const}$ und T = const berechnet, so hat man mit (233) bereits die partiellen Ableitungen

$$\frac{\partial w_0}{\partial v_0} \approx \frac{\overline{w_0} - w_0}{\overline{w_0}(\tau) - \overline{w_0}(0)} \quad \text{usw.}$$

gewonnen. — Nimmt man dagegen konstante Temperatur, aber höhenveränderliche Luftdichte gemäß der Everlingschen Formel an, so gelten die Funktionen \bar{w}_0 , $\bar{\xi}_0$, $\bar{\eta}_0$ für den neuen c-Wert [vgl. § 16b]

(234)
$$\ddot{c} = c \cdot e^{k \cdot w_0(\tau)}$$
 d. h. $\frac{\varDelta c}{c} = e^{k \cdot w_0(\tau)} - 1$.

Hat man also mit τ_1 und τ_2 die Funktionen \bar{w}_0 und \bar{w}_0 bestimmt, so findet man aus dem linearen Gleichungssystem

$$(235) \left| \begin{array}{c} \bar{w}_{0} - w_{0} = \left(\frac{\varDelta c}{c}\right)_{1} \cdot \frac{\partial w_{0}}{\partial (\ln c)} + \left(\frac{\varDelta v_{0}}{v_{0}}\right)_{1} \cdot \frac{\partial w_{0}}{\partial (\ln v_{0})}; \\ \overline{\bar{w}}_{0} - w_{0} = \left(\frac{\varDelta c}{c}\right)_{2} \cdot \frac{\partial w_{0}}{\partial (\ln c)} + \left(\frac{\varDelta v_{0}}{v_{0}}\right)_{2} \cdot \frac{\partial w_{0}}{\partial (\ln v_{c})}; \\ (\text{entspr. für } \xi_{0} \text{ und } \eta_{0}) \end{array} \right.$$

ohne weiteres die Funktionen $\frac{\partial w_0}{\partial (\ln c)}$ und $\frac{\partial w_0}{\partial (\ln v_0)}$. — Sind dagegen die w_0 , ξ_0 . η_0 für höhenveränderliche Temperatur berechnet, so gilt für \bar{w}_0 , $\bar{\xi}_0$, $\bar{\eta}_0$ der geänderte Bodenwert $\bar{T}_b = T_b + \Lambda \cdot w_0(\tau)$; es ist also $\Delta T_b = \Lambda \cdot w_0(\tau)$. Im übrigen vollzieht sich die Bestimmung der $\frac{\partial w_0}{\partial (\ln T_b)}$ zusammen mit $\frac{\partial w_0}{\partial (\ln v_0)}$ usw. genau wie oben nach einem System, das analog (235) gebildet wird. Die Funktion $\frac{\partial w_0}{\partial (\ln c)}$ ist jedoch in diesem Falle mit Hilfe der Darrieusschen Formeln (219), (220) zu bestimmen. — Für die Korrekturglieder $\bar{w}_1, \bar{\xi}_1, \bar{\eta}_1$ lassen sich den Formeln (233) ähnliche Beziehungen ableiten. Im Falle kleiner und mittlerer Geschwindigkeiten genügt es,

$$w_1 = \bar{w}_1; \ \xi_1 = ar{\xi_1}; \ \eta_1 = ar{\eta}_1$$

oder besser

(236)
$$\frac{\bar{w}_1}{w_1} \cdot \frac{w_0}{\bar{w}_0} = \frac{\bar{\xi}_1}{\xi_1} \cdot \frac{\xi_0}{\bar{\xi}_0} = \frac{\bar{\eta}_1}{\eta_1} \cdot \frac{\eta_0}{\bar{\eta}_0} = \frac{\bar{c}}{c} = 1 + \frac{\Delta c}{c}$$

zu nehmen. — Die Zweckmäßigkeit und Genauigkeit dieses Verfahrens wurde vom Verfasser⁽⁷⁹⁾ an Beispielen nachgewiesen.

C. ANWENDUNG DER WAHRSCHEINLICHKEITSLEHRE AUF DIE BALLISTIK

§ 29. Begriff der Wahrscheinlichkeit. Mathematische Formulierung

Wenn ein Ziel unter möglichst gleichen äußeren Umständen beschossen wird, dann werden trotzdem nicht alle Einschläge an derselben Stelle liegen. Trotz sorgfältigster Ausschaltung aller feststellbaren, einseitigen Abweichungen treten Unterschiede auf, die ihren Grund in vielen zufälligen Ereignissen (z. B. Zielfehler, Rohrschwingungen usw.) und Schwankungen (z. B. des Geschoßgewichts, der Schwerpunktlage, der Anfangsgeschwindigkeit usw.) haben. Es wird aber bei Abgabe vieler Schüsse eine gewisse Regelmäßigkeit in der Verteilung der Einschläge eintreten, zwar nicht für den Einzelschuß, jedoch stets für die Gesamtheit der abgegebenen Schüsse. Aus der Art der Verteilung der Schüsse in einem solchen "Treffbild" lassen sich, wie wir weiter unten sehen werden, gewisse Schlüsse ziehen auf die "Wahrscheinlichkeit", ein flächenhaft oder räumlich ausgedehntes Ziel zu treffen.

Die mathematische Wahrscheinlichkeit* a für das Eintreten eines Ereignisses A ist das Verhältnis der Zahl γ der für das Eintreten von A günstigen Fälle zu der Zahl μ der überhaupt möglichen Fälle, also

(237)

$$a=\frac{\gamma}{\mu}$$

Beispiel. Mit zwei Würfeln sind 6 Augen zu werfen. Die Zahl der möglichen Fälle ist $\mu = 36$, die der günstigen $\gamma = 6$; denn 6 Augen kommen durch folgende Kombinationen der beiden Würfel zustande: 1 und 5, 2 und 4, 3 und 3 und in umgekehrter Folge. Somit ist $a = \frac{1}{a}$.

^{*} Wir weisen hierbei ausdrücklich darauf hin, daß die in diesen Entwicklungen benutzte Definition der Wahrscheinlichkeit auf der Annahme beruht, daß alle Ereignisse gleich möglich und gleich wahrscheinlich sind. In neuerer Zeit hat diese auf Laplace zurückgehende Betrachtung von Wahrscheinlichkeiten manche Wandlungen und Vertiefungen erfahren. Inwieweit die neueren Erkenntnisse auf die Ballistik angewandt werden können, möge dahingestellt bleiben.

Die Gewißheit hat die Wahrscheinlichkeit 1 ($\gamma = \mu$), d. h. von N Versuchen erfüllen alle N die Bedingung. Bei einer Wahrscheinlichkeit *a* gilt allgemein für die Zahl der erfüllten Versuche $a \cdot N$, wenn im ganzen N Versuche durchgeführt werden.

Wir betrachten nun ein "Treffbild", welches auf eine senkrechte Scheibe geschossen worden sei (Abb. 29). Die Waffe sei genau auf

Abb. 29. Treffbild und Gaußsche Verteilung

den Mittelpunkt der Scheibe eingeschossen. Nunmehr zerlegen wir die Fläche in waagerechte und senkrechte Streifen der gleichen Breite Δy bzw. Δz , zählen die Anzahl der auf jeden Streifen entfallenden Schüsse aus und verschieben diese in dem zugehörigen Streifen nach unten bzw. nach rechts. Man erkennt, daß die Verteilung der Schüsse sich um die Symmetrieachsen der Scheibe (y bzw. z) häuft und nach den Seiten zu gleichmäßig abnimmt. Würde die Anzahl der Schüsse unbegrenzt wachsen, so würden die Verteilungen allmählich durch Kurven der in Abb. 29 mitgezeichneten Art $(w_1 \text{ bzw. } w_0)$

begrenzt werden. Diese Kurven entsprechen dem Gaußschen Fehlergesetz, welches z. B. für z folgendermaßen lautet: "Von einer hinreichend großen Anzahl N von Schüssen hat nur eine Anzahl m eine Abweichung zwischen z und z + dz; dabei ist

(238)
$$m = N \cdot \frac{h}{\sqrt{\pi}} \cdot e^{-h^* \cdot z^*} \cdot dz$$

Das entsprechende gilt auch für y."

In der Gleichung (238) bezeichnet man h als "Präzisionsmaß". Die Bedeutung ist leicht einzusehen: Je größer h ist, desto stärker nimmt $e^{-h^2 \cdot z^2}$ mit z ab, d. h. um so stärker häufen sich die Schüsse um die Symmetrieachse, um so "präziser" (genauer) schießt also die Waffe. — Nun sei weiter für die y-Richtung das Präzisionsmaß k gegeben. Dann haben von den m Schüssen, deren Abweichung zwischen z und z + dz liegt, wiederum nur l Schüsse eine Abweichung zwischen y und y + dy; es ist also

(239)
$$l = m \cdot \frac{k}{\sqrt{\pi}} \cdot e^{-k^2 \cdot y^2} \cdot dy = N \cdot \frac{k \cdot h}{\pi} \cdot e^{-k^2 \cdot y^2 - h^2 \cdot z^2} \cdot dy \cdot dz,$$

d. h. mit anderen Worten: von N abgegebenen Schüssen liegen lin dem kleinen Rechteck mit den Seiten dy und dz, dessen innere Ecke, bezogen auf den "mittleren Treffpunkt" M, die Koordinaten y und z hat.

Wir können nunmehr auch leicht folgende Frage beantworten: "Wieviele Schüsse liegen im Streifen (-z, +z) bzw. wieviele im Viereck [(-z, +z) (-y, +y)]?" Die Antwort lautet, wie sofort aus (238) und (239) folgt:

(240)
$$\begin{pmatrix} M = N \cdot \int_{-z}^{+z} \frac{h}{\sqrt{\pi}} \cdot e^{-z^{2}} \cdot dz & \text{bzw.} \\ -z & \\ -z & \\ -z & \\ L = N \cdot \int_{-y}^{+y} \int_{-z}^{+z} \frac{h}{\pi} \cdot e^{-h^{2} \cdot z^{2} - k^{2} \cdot y^{2}} \cdot dy \cdot dz. \end{cases}$$

Die Funktion

$$\int_{-x}^{+x} \frac{h}{\sqrt{\pi}} \cdot e^{-h^2 \cdot x^2} \cdot dx = \int_{-t}^{+t} \frac{1}{\sqrt{\pi}} e^{-t^2} \cdot dt = \int_{0}^{t} \frac{2}{\sqrt{\pi}} \cdot e^{-t^2} \cdot dt, \quad (t = h \cdot x),$$

ist numerisch berechnet und für den Gebrauch in der Praxis tabuliert worden⁽⁸⁾. Wir kommen darauf noch zurück.

§ 30. Experimentelle Bestimmung des Präzisionsmaßes. Ausreißer

Wir müssen nunmehr auf die empirische Bestimmung des Präzisionsmaßes eingehen. Wie in Abb. 29 nehmen wir auch weiterhin an, daß der mittlere Treffpunkt M genau bekannt und der Nullpunkt eines Koordinatensystems (y, z) sei. Der Ort des Geschoßeinschlages P_i hat dann die Koordinaten (y_i, z_i) , die wir somit auch als die Fehler in der vertikalen bzw. horizontalen Richtung bezeichnen können. Es genügt, wenn wir uns im folgenden zunächst auf die z-Richtung beschränken, da für jede beliebige andere Richtung das Analoge gilt.

Um mit Hilfe der Fehler z_i das Präzisionsmaß zu definieren, geht man von irgendeinem Mittelwert der $|z_i|$ aus. Ganz allgemein wählen wir einen Mittelwert μ so, daß die Beziehung gilt:

(241)
$$N \cdot \mu_r^r = \sum_i |z_i|^r = |z_1|^r + |z_2|^r + \cdots$$

Darin ist N die Anzahl der Schüsse und r ein Exponent, dessen Größe zunächst noch offengelassen ist⁽⁴⁾. In der Summe (241) kommt jeder Fehler z_i so oft vor, wie es nach dem Fehlergesetz (238) möglich ist; wir dürfen infolgedessen schreiben

$$\mu_r^{r} = \frac{\hbar}{\sqrt{\pi}} \cdot \int\limits_{-\infty}^{+\infty} |z|^r \cdot e^{-\hbar^{\mathbf{i}} \cdot z^{\mathbf{i}}} \cdot dz = \frac{2\hbar}{\sqrt{\pi}} \cdot \int\limits_{0}^{\infty} z^r \cdot e^{-\hbar^{\mathbf{i}} \cdot z^{\mathbf{i}}} \cdot dz.$$

Diese Beziehung läßt sich in die bekannte Γ -Funktion^(XI) überführen. Setzen wir $h^2 \cdot z^2 = t$, so folgt

(242)
$$\mu_r^{r} = \frac{1}{h^r \cdot \sqrt[r]{\pi}} \cdot \int_0^\infty t^{\frac{r-1}{2}} \cdot e^{-t} \cdot dt = \frac{1}{h^r \cdot \sqrt[r]{\pi}} \cdot \Gamma\left(\frac{r+1}{2}\right).$$

In der Praxis sind gebräuchlich r = 1 oder r = 2. Man nennt $\mu_1 = E$ die durchschnittliche Abweichung und $\mu_2 = \mu$ die mittlere quadratische Abweichung. So entsteht, da für r = 1 bzw. r = 2 die Werte von $\Gamma(1)$ bzw. $\Gamma(1,5)$ numerisch gleich 1 bzw. $\sqrt{\frac{\pi}{4}}$ sind:

(243)
$$E = \frac{1}{h \cdot \sqrt{\pi}}; \quad \mu = \frac{1}{h \cdot \sqrt{2}}; \quad \mu = \sqrt{\frac{\pi}{2}} \cdot E$$

Neben den Mittelwerten E und μ spielt noch die sog. "wahrscheinliche oder 50% ige Abweichung $w^{\prime\prime}$ eine Rolle. Dies ist die Abweichung, für die die Wahrscheinlichkeit $\frac{1}{2}$ besteht oder anders ausgedrückt: 2w ist die Breite eines Streifens, der 50% aller abgegebenen Schüsse enthält, wenn der mittlere Treffpunkt auf der Mittellinie des Streifens liegt. Zur Bestimmung von w dient somit die Gleichung

$$\frac{1}{2} = \frac{h}{\sqrt{\pi}} \cdot \int_{-w}^{+w} e^{-h^* \cdot z^*} \cdot dz = \frac{1}{\sqrt{\pi}} \int_{-h \cdot w}^{+h \cdot w} e^{-t^*} \cdot dt = \frac{2}{\sqrt{\pi}} \cdot \int_{0}^{h \cdot w} e^{-t^*} \cdot dt = \varphi(h \cdot w).$$

Für $\varphi(w \cdot h) = \frac{1}{2}$ erhält man, wenn man in eine Tabelle* für φ hineingeht, $w \cdot h = 0.4769$ und somit

(243 a)
$$w = 0.6745 \cdot \mu = 0.8453 \cdot E.$$

In der Artillerie bezeichnet man 2w als die "50% ige Streuung": l_{50} , b_{50} , h_{50} bzw. für Länge, Breite, Höhe. Sie wird in den Schußtafeln angegeben und bezeichnet, wie bereits ausgeführt, die zum mittleren Treffpunkt symmetrisch verlaufenden Streifen der Länge, Breite und Höhe, die wahrscheinlich die bessere Hälfte der abgegebenen Schüsse enthalten.

Die Wahrscheinlichkeit, einen Streifen der Breite 2z (d. h. von -z links bis +z rechts der Symmetrieachse durch den mittleren Treffpunkt) zu treffen, ist also gegeben durch

$$W = \int_{-z}^{+z} \frac{h}{\sqrt{\pi}} \cdot e^{-h^{2} \cdot z^{2}} \cdot dz = \frac{2}{\sqrt{\pi}} \cdot \int_{0}^{z} e^{-(hz)^{2}} \cdot d(hz)$$
$$= \frac{2}{\sqrt{\pi}} \cdot \int_{0}^{z} e^{-\left(\frac{0.6745}{\sqrt{2}} \cdot \frac{z}{w}\right)^{2}} \cdot d\left(\frac{0.6745}{\sqrt{2}} \cdot \frac{z}{w}\right) = \varphi\left(\frac{0.6745}{\sqrt{2}} \cdot \frac{z}{w}\right).$$

Die Funktion ist, wie schon gesagt, tabuliert. Zweckmäßiger ist es nun, nicht $\left(\frac{0.6745}{\sqrt{2}} \cdot \frac{z}{w}\right)$, sondern direkt $\left(\frac{z}{w}\right)$ als Argument zu nehmen. Dann ist eine neue Funktion ψ definiert durch

$$W = \varphi\left(\frac{0,6745}{\sqrt{2}} \cdot \frac{z}{w}\right) = \psi\left(\frac{z}{w}\right).$$

Auch diese letztere Funktion ψ ist z. B. bei Cranz⁽¹⁾ tabuliert.**

* Vgl. die Tabelle für $\psi\left(\frac{z}{w}\right)$ im Anhang. ** Vgl. die Zahlentafeln im Anhang. Athen, Ballistik

226 Anwendung der Wahrscheinlichkeitslehre auf die Ballistik

Nun war bisher angenommen worden, daß der mittlere Treffpunkt genau bekannt sei. In Wahrheit ist das aber nicht der Fall; denn bei einer endlichen Anzahl von abgegebenen Schüssen kann man nur den wahrscheinlichen Mittelpunkt (als arithmetisches Mittel der gemessenen Koordinaten) bestimmen. Dieser "scheinbare" mittlere Treffpunkt sei definiert durch z_0 , so also, daß

(244)
$$z_0 = \sum_i \left(\frac{z_i}{N}\right) = \frac{1}{N} \cdot (z_1 + z_2 + \cdots)$$

Damit ergeben sich nunmehr die "scheinbaren" Fehler

(244 a)
$$\lambda_i = z_i - z_0,$$

die mit den "wahren" Fehlern z_i nicht mehr übereinstimmen. Folglich stimmen auch die aus den z_i berechneten Mittelwerte E, μ , wnicht mehr mit den aus den λ_i berechneten E', μ' , w' überein. Der Zusammenhang ist aber sofort herstellbar. Denn wegen (244) und (244a) gilt für irgendein *i*:

$$\lambda_i = z_i - \frac{1}{N} \cdot \sum_{j=1}^{j=k} z_j \quad \text{oder} \quad \lambda_i = \frac{N-1}{N} \cdot z_i - \frac{1}{N} \sum_{j=1}^{j=k} (\text{außer } i)$$

Da nun $\mu'^2 = \sum \frac{\lambda_i^2}{N}$ sein soll und da beim Quadrieren der vorstehenden Gleichung die doppelten Produkte der rechten Seite sich zum größten Teil aufheben, so gilt

$$\mu'^2 = \sum \frac{\lambda_i^3}{N} = \left(\frac{N-1}{N}\right)^3 \cdot \mu^2 + \frac{N-1}{N^2} \cdot \mu^2 \quad (+ \text{ vernachlässigbare dopp. Produkte})^*$$

* Die doppelten Produkte heben sich auf, da ungefähr gleichviele positive und negative z_i , und zwar je zwei entgegengesetzt gleiche vorhanden sind. Ferner wird

$$\sum \left[\frac{1}{N^2} \left(\sum z_j\right)^2\right] = \frac{N-1}{N^2} \cdot \mu^2,$$

wie man leicht zeigt und an dem Beispiel der 4 Werte a, b, c, d erkennt: Da die Summe der doppelten Produkte ab, cd usw. verschwinden soll, wird bei der Summation im obigen Sinne

$$\begin{split} \Sigma(\Sigma a)^2 &= (a^2 + b^2 + c^2) + (b^2 + c^2 + d^2) + (c^2 + d^2 + a^2) \\ &+ (d^2 + a^2 + b^2) = 3(a^2 + b^2 + c^2 + d^2) = 3\mu^2. \end{split}$$

oder

(245)
$$\mu^{\prime 2} = \mu^{2} \cdot \frac{N-1}{N}; \quad \text{folglich} \quad \mu = \sqrt{\frac{N}{N-1}} \cdot \mu^{\prime} \quad \text{oder}$$
$$\mu = \sqrt{\frac{\sum \lambda_{\ell}^{3}}{N-1}}$$

 ${\rm Wegen}\,E\,:E'=\mu\!:\!\mu'\quad {\rm folgt\ sofort}$

(245 a)
$$E = \frac{\sum |\lambda_i|}{\sqrt{N \cdot (N-1)}}$$

Die Berechnung von w erfolgt dann weiter nach (243a). Es sei darauf hingewiesen, daß die Bestimmung von w aus μ gegenüber derjenigen aus E die genauere und daher im deutschen Heer auch die ausschließlich gebräuchliche ist.

Bevor wir die vorstehenden Ergebnisse anwenden, müssen wir uns noch darüber klar werden, wann eine Beobachtung zu verwerfen ist. Theoretisch könnte man versuchen, die praktisch festgestellte Verteilung zu vergleichen mit der Gaußschen Verteilung (238). Sobald sich Unregelmäßigkeiten zeigen, wäre ein Beobachtungsergebnis auszuschalten. Es gibt verschiedene Theorien über dieses Problem. Allen gemeinsam ist aber, daß ein Schuß dann auszuschalten ist, wenn sein Fehler λ_i einen bestimmten Maximalwert M derart überschreitet, daß

$$\varphi(M \cdot h) = \varphi\left(\frac{0.4769 \cdot M}{w}\right) = \psi\left(\frac{M}{w}\right) > f(N)$$

wird, wobei f(N) eine verschieden definierte Funktion der Schußzahl ist. Chauvenet z. B. schließt folgendermaßen: Von NSchüssen liegen $N \cdot \psi\left(\frac{M}{w}\right)$ innerhalb des Streifens (— M, + M), also $N \cdot \left[1 - \psi\left(\frac{M}{w}\right)\right]$ außerhalb dieses Streifens. Diese Zahl soll aber gerade 1 sein, da es sich um einen, als "Ausreißer" auszuschaltenden Schuß handelt. Beträgt diese Zahl weniger als $\frac{1}{2}$, so hat ein Fehler vom Betrag M eine größere Wahrscheinlichkeit gegen sich als für sich. Die Gleichung

(246)
$$N \cdot \left[1 - \psi\left(\frac{M}{w}\right)\right] = \frac{1}{2} \quad \text{oder} \quad \psi\left(\frac{M}{w}\right) = \frac{2N-1}{2N},$$

15"

228 Anwendung der Wahrscheinlichkeitslehre auf der Ballistik

d. h. also das daraus bestimmte

$$\kappa = \frac{M}{w}$$

entscheidet somit über die Ausschließung einer Beobachtung: Ist der gemessene Fehler $M > \varkappa \cdot w$, so ist dieser Schuß auszuschalten. Für die \varkappa erhält man nachstehende Tabelle

N	6	8	10	12	14	16	18
×	2,57	2,76	2,91	3,02	3,11	3,19	3,26

An dem folgenden Beispiel mögen die vorangehenden Entwicklungen erläutert werden.

Beispiel. Bei einem Schießen wurden unter gleichen Schießbedingungen folgende 10 Einschläge in Schießplatzkoordinaten gemessen:

nach der Länge: 5091, 5129, 5122, 5123, 5121, 5115, 5122, 5115, 5120, 5142, nach der Seite: 602, 605, 610, 611, 608, 609, 616, 627, 613, 619. Danach ist $x_0 = 5120$ und $z_0 = 612$. Die λ_i sind somit

nach der Länge: $-29; +9; +2; +3; +1; -5; +2; -5; \pm 0; +22;$ nach der Seite: -10; -7; -2; -1; -4; -3; +4; +15; +1; +7.Wir finden weiter

für die Länge:
$$\sum \lambda_i^2 = 1474$$
; $\mu^2 = 163,8$; $\mu = 12,8$; $w = 8,6$; $l_{50} = 17,2$;
 $\varkappa \cdot w = 25,0$;

für die Seite: $\sum \lambda_i^2 = 470; \ \mu^2 = 52,2; \ \mu = 7,4; \ w = 5,0; \ b_{50} = 10,0; \ \varkappa \cdot w = 14,6.$

Der Länge nach ist die Abweichung (-29) absolut größer als $\varkappa \cdot w = 25,0$; das ist also ein Ausreißer, der ausgeschlossen werden muß. Das gleiche gilt für den Fehler (+15) der Seite nach. Auf die Wiederholung der Rechnung ohne diese Ausreißer verzichten wir hier. Wir wollen lediglich noch die Bestimmung von w über E vornehmen:

nach der Länge:
$$\sum |\lambda_i| = 78; \quad \sqrt[4]{N \cdot (N-1)} = 9,487; \quad E = 8,22;$$

 $w = 6,9; \quad l_{50} = 13,8$

nach der Seite: $\sum |\lambda_i| = 54$; $\sqrt[3]{N \cdot (N-1)} = 9,487$; E = 5,69; w = 4,8; $b_{50} = 9,6$.

Die so erhaltenen Streuungswerte weichen in der Länge merklich von dem obigen Wert ab.

§ 31. Berechnung der Treffwahrscheinlichkeit gegen Flächen

Mit Hilfe der oben definierten Wahrscheinlichkeitsfunktion ψ sind wir nunmehr imstande, die Treffwahrscheinlichkeit bzw. die zu erwartenden Trefferzahlen gegen bestimmt geformte Ziele zu berechnen. Die folgenden Sätze lassen sich unschwer auf der Grundlage der Formeln (238) und (239) ableiten; es genügt, wenn wir sie ohne ausführlichen Beweis angeben.

1. Die Wahrscheinlichkeit, einen Zielstreifen der Breite 2l zu treffen, der durch zwei parallele, zur Schußebene senkrechte oder parallele Geraden begrenzt wird und auf dessen Mittellinie der mittlere Treffpunkt liegt, ist

$$\psi = \psi\left(\frac{l}{w}\right) = \psi\left(\frac{2l}{s_{50}}\right),$$

wobei s_{50} die 50%/ $_0$ ige Streuung nach der Länge, Breite oder Höhe bedeutet.

2. Die Wahrscheinlichkeit, ein Rechteck mit den Seiten 2l und 2b zu treffen, in dessen Mittelpunkt der mittlere Treffpunkt liegt, ist

$$\psi\left(\frac{2l}{l_{50}}\right)\cdot\psi\left(\frac{2b}{b_{50}}\right),$$

wenn l parallel der Schußrichtung verläuft.

3. Hat der mittlere Treffpunkt von den begrenzenden Parallelen des Zielstreifens die Abstände l_1 bzw. l_2 ($l_1 < l_2$), so ist die Wahrscheinlichkeit, diesen Zielstreifen zu treffen

$$\frac{1}{2} \cdot \left[\psi \left(\frac{2 l_2}{s_{50}} \right) + \psi \left(\frac{2 l_1}{s_{50}} \right) \right],$$

wenn der mittlere Treffpunkt innerhalb des Streifens, dagegen

$$\frac{1}{2} \left| \psi \left(\frac{2 l_2}{s_{50}} \right) - \psi \left(\frac{2 l_1}{s_{50}} \right) \right|,$$

wenn der mittlere Treffpunkt außerhalb des Zielstreifens liegt.

4. Durch Kombination der Sätze 2. und 3. bestimmt man ohne Schwierigkeit die Treffwahrscheinlichkeit gegen eine Rechteckfläche, bei der der mittlere Treffpunkt nicht mit dem Mittelpunkt zusammenfällt, sondern irgendwo im Innern oder außerhalb des Rechtecks liegt:

٠

$$\frac{1}{4} \left[\psi\left(\frac{2 l_3}{l_{50}}\right) \pm \psi\left(\frac{2 l_1}{l_{50}}\right) \right] \cdot \left| \psi\left(\frac{2 b_3}{b_{50}}\right) \pm \psi\left(\frac{2 b_1}{b_{50}}\right) \right|$$

Es handle sich nunmehr darum, die Treffwahrscheinlichkeit gegen eine beliebig begrenzte Scheibe zu finden. Um diese Aufgabe zu lösen, bedienen wir uns eines Kunstgriffes, den Rothe⁽¹⁰⁴⁾⁽¹⁰⁵⁾ zuerst angegeben hat. Nach Formel (239) ist die Wahrscheinlichkeit, ein Gebiet B(x, y) zu treffen, gegeben durch

$$W = \frac{h \cdot k}{\pi} \cdot \iint_{B} e^{-h^{*} x^{*} - k^{*} y^{*}} dx \cdot dy,$$

wobei das Doppelintegral über das zu treffende Gebiet B(x, y) zu erstrecken ist. Hierin werden wir neue Koordinaten durch die folgenden Substitutionen einführen:

(246)
$$d\xi = \frac{h}{\sqrt{\pi}} \cdot e^{-h^* x^2} \cdot dx, \quad \text{d. h.} \quad \xi = \varphi(h \cdot x);$$
$$d\eta = \frac{k}{|\pi|} \cdot e^{-k^* y} dy, \quad \text{d. h.} \quad \eta = \varphi(k \cdot y).$$

Damit geht das obige Doppelintegral über in das folgende

(247)
$$W = \iint_{\bar{B}(\xi,\eta)} d\xi \cdot d\eta,$$

welches durch Planimetrieren ausgewertet werden kann. Dazu braucht die das Gebiet B(x, y) begrenzende Kurve nur mit Hilfe der Transformation (246) in das neue Koordinatensystem (ξ, η) übertragen werden. Das Gebiet B(x, y) geht damit in das Gebiet $\overline{B}(\xi, \eta)$ im System (ξ, η) über. Planimetriert man diese transformierte Scheibe aus, so wird sofort die gesuchte Wahrscheinlichkeit erhalten.

Wir betrachten nunmehr noch den Integranden des Doppelintegrals. Dann folgt, daß die Treffwahrscheinlichkeit für alle die Punkte der Ebene (genauer für die Flächenelemente d f) gleich ist, für die

$$e^{-h^{\mathbf{i}} x^{\mathbf{i}} - k^{\mathbf{i}} y^{\mathbf{i}}} = \operatorname{const} = \frac{1}{U}.$$

Somit liegen die Punkte auf der Ellipse

$$h^2 \cdot x^2 + k^2 \cdot y^2 = \ln C.$$

Nun sind h und k nach (243), (243a) den 50% igen Streuungen umgekehrt proportional; also sind die Achsen der Ellipsen den letzteren direkt proportional, und im besonderen erkennen wir, daß bei einer großen Anzahl von Schüssen der Umriß des Streuungsbildes ellipsenförmig wird.

In der Artillerie werden verschiedene Arten von Streuungen unterschieden:

50%ige	Längenstreuung	(l_{50})	in der Schußrichtung,
50%ige	Breitenstreuung	(b ₅₀)	senkrecht zur Schußrichtung
			und waagerecht,
50%ige	Höhenstreuung	(h_{50})	senkrecht zur Schußrichtung
			und senkrecht,
50 % ige	Querstreuung	(q_{50})	in der Flugbahnebene, senk-
		1200/	recht auf der Flugbahntan-
			gente,
50 % ige	Längsstreuung	(t_{50})	in Richtung der Bahntan-
	0 0		gente.

Ist $|\vartheta|$ der absolute Wert des Neigungswinkels in einem Flugbahnpunkt, so gelten dort folgende Zusammenhänge:

(248)
$$h_{50} = l_{50} \cdot \text{tg} |\vartheta|; \quad q_{50} = l_{50} \cdot \sin |\vartheta|; \quad t_{50} = \frac{l_{50}}{\cos |\vartheta|}.$$

D. SCHUSSTAFELBALLISTIK

Wir haben schon des öfteren darauf hingewiesen, daß dem Artilleristen in Form der Schußtafel die notwendigen Unterlagen für die Durchführung des Schießens an die Hand gegeben werden. In diesen Tafeln muß alles das enthalten sein, was für die Lösung irgendeiner Aufgabe militärischer Art erforderlich ist. Inhalt und Aufbau der Schußtafel sind dadurch weitgehend bestimmt. Wir werden daher diese Dinge am zweckmäßigsten an Hand eines Schußtafelauszuges schildern. Vorher wollen wir jedoch in großen Zügen auf die Grundlagen und die Berechnung der Schußtafeln eingehen.

§ 32. Die Schußtafelberechnung

a) Versuchsanordnung und Versuchsdurchführung

Der Leser wird aus den Entwicklungen, die in diesem Buch durchgeführt worden sind, die Überzeugung gewonnen haben, daß die Theorie eine strenge Lösung des außenballistischen Problems bisher nicht geben konnte. Zwar läßt sich die Gesamtheit der Flugbahnelemente eines bestimmten Geschosses mit verhältnismäßig guter Annäherung numerisch angeben. Das Ergebnis ist von vielen wesentlichen Parametern usw. abhängig (ballistischer Beiwert, Luftwiderstandsfunktion usw.), und andererseits stimmen meistens Luftgewichtsverteilung und Temperaturverlauf nicht mit den der Theorie zugrunde gelegten überein. Alle diese Gründe bewirken, daß die praktische Ballistik heute noch in erster Linie auf das Experiment angewiesen ist. Die Theorie spielt vielmehr eine ausgleichende und interpolierende Rolle. Ihre Vervollkommnung bringt es allerdings als großen Vorteil mit sich, daß die Anzahl der Versuche verhältnismäßig klein gehalten werden kann. Aus diesen wenigen Versuchen werden mit Hilfe der Theorie auf Grund eines vorher für den besonderen Zweck ausgewählten Gesetzes für den Luftwiderstand und der geeigneten Rechenmethode die zu verschiedenen v_0 -Werten und verschiedenen Erhöhungen φ gehörigen ballistischen Beiwerte aus den Versuchsergebnissen bestimmt. Durch graphischen Ausgleich stellt man dann die Netzkurven

 $c = c(v_0, \varphi)$ her. Erst dann setzt die genaue Berechnung der Schußtafel ein.

Die Durchführung eines Schußtafelschießens muß mit größter Sorgfalt vorgenommen werden. Es muß nicht nur darauf geachtet werden, daß die einzelnen Schußgruppen (Treffbilder) unter möglichst genau gleichen Bedingungen geschossen werden, sondern es muß darüber hinaus oberster Grundsatz sein, durch fortgesetzte Messungen vor und während des Schießens die Unterlagen zu vervollkommnen. — Hat ein Geschütz mehrere Ladungen (verschieden stark bemessene Mengen von Treibpulver und daher verschiedene Anfangsgeschwindigkeiten), so ist es empfehlenswert, Treffbilder in möglichst allen Ladungen zu schießen; zum mindesten müssen die kleinste und größte, sowie genügend viele Zwischenladungen beschossen werden, wobei stets der Bereich der Schallgeschwindigkeit besonders zu berücksichtigen ist. Angenommen, ein Geschütz habe 7 Ladungen mit den Anfangsgeschwindigkeiten 200. 240, 300, 360, 420, 500, 580 m/s, dann sind nach den obigen Gesichtspunkten mindestens die Ladungen 1 ($v_0 = 200 \text{ m/s}$), 4 (v_0 = 360 m/s, 5 ($v_0 = 420 \text{ m/s}$) und 7 ($v_0 = 580 \text{ m/s}$) zu beschießen. Was die Anzahl der in jeder Ladung zu untersuchenden Erhöhungen angeht, so sollten vier verschiedene Erhöhungen für die "untere Winkelgruppe" (0° $< \varphi \leq 45^{\circ}$) im allgemeinen genügen; als zweckmäßig haben sich die Erhöhungen 5°, 15°, 30°, 43° erwiesen. Das entsprechende gilt für die "obere Winkelgruppe" $(45^{\circ} < \varphi < 90^{\circ})$ mit den Erhöhungen 80°, 70°, 60°, 45°. Beim Erschießen der mittleren Entfernung für jede Ladung und Erhöhung sollen gleichzeitig auch die 50 % igen Streuungen ermittelt werden. Man darf daher nicht weniger als 10 Schuß je Treffbild aufwenden; besser sind 15 Schuß, die bei besonders genauen Vergleichsbeschüssen stets erforderlich sind. Die Anzahl der Treffbilder ist natürlich entsprechend zu vermehren, wenn es sich um Geschosse mit einstellbaren Zeitzündern handelt und wenn deren Sprengpunkte im Raum zeitlich genau festgelegt sein müssen (Flak!). Im übrigen sind ganz allgemein folgende Messungen und Maßnahmen erforderlich:

1. Festlegung des Geschützortes und des Geschößeinschlages in Platzkoordinaten des Schießplatzes. Der Schießplatz ist kartenmäßig bekannt. Infolgedessen ist die Schußrichtung bekannt. Auf die Feststellung der Höhenlage von Geschütz und Einschlag muß bei welligem Gelände Wert gelegt werden. 2. Messungen des Luftgewichts und der Temperatur am Boden und in größeren Höhen, möglichst oft. Das gleiche gilt für Windmessungen. Da ein mit der Höhe sowohl der Richtung wie der Stärke nach veränderlicher Wind rechnerisch nur unsicher erfaßt werden kann, wird ein Schußtafelschießen möglichst mit zwei Geschützen durchgeführt, die in entgegengesetzter Richtung schießen. Dadurch wird, wenn aus den Ergebnissen beider Geschütze das Mittel genommen wird, der Einfluß des Längs- und Seitenwindes ausgeschaltet.

3. Bestimmung des Gewichtes für jedes einzelne Geschoß. Für das Schußtafelschießen werden aber zweckmäßig nur die Geschosse verwandt, die das genau vorgeschriebene schußtafelmäßige Gewicht haben.

4. Genaueste Prüfung der Pulverladungen hinsichtlich Einheitlichkeit, Gleichheit der Lieferung, Gewicht und Feuchtigkeitsgehalt. Fortlaufende Bestimmung der Pulvertemperatur. Die Ladungen werden nach Möglichkeit bereits mindestens 24 Stunden vor Beginn des Schießens in besonderen fahrbaren Temperierräumen eingelagert und auf die schußtafelmäßige Normaltemperatur gebracht.

5. Bei jedem einzelnen Schuß sollen außerdem noch folgende Maßnahmen erfolgen:

Bestimmung der Anfangsgeschwindigkeit,

Messung des höchsten Gasdruckes,

Messung des Verbrennungsraumes,

Messung des Rohrrücklaufes,

Einstellung der Erhöhung nur mit empfindlichem Winkelmesser,

Festlegung der Seitenrichtung nur mit Hilfe genau bekannter Richtpunkte,

Messung der Geschoßflugzeit mittels Stoppuhr. Übertragung des Abschußknalles zum Beobachter am Geschoßeinschlag durch

- Fernsprecher; für manche Zwecke sind sogar objektive Flugzeitmessungen mittels geeigneter Apparaturen unerläßlich,
- Feststellung der Tageszeit, um später die Schußergebnisse mit den meteorologischen Messungen zu vergleichen.

Von den hier geforderten Messungen werden wir anschließend die beiden wichtigsten ausführlicher besprechen.

b) Messung

der Anfangsgeschwindigkeit und des Gasdruckes

Messung der Anfangsgeschwindigkeit. Zur Messung der Anfangsgeschwindigkeit sind verschiedene Verfahren vorgeschlagen worden, von denen aber nur einige wenige im praktischen Gebrauch sind. Die beiden wichtigsten sollen beschrieben werden.

Vor der Mündung des Geschützes befinden sich 2 Drahtspulen, die einen bestimmten Abstand voneinander haben und deren Durchmesser so groß ist, daß das Geschoß ohne Gefahr durch beide Spulen durchfliegen kann. Die Geschosse werden vor dem Abschuß magnetisiert; sie verursachen daher beim Durchfliegen der Spulen Induktionsströme, die ihrerseits durch Vermittlung von Verstärkern und Relais die eigentlichen Zeitmesser in Betrieb setzen. Als die wichtigsten nennen wir das Boulengé-Gerät und den Oszillographen.

Beim Boulengé-Gerät (Abb. 30) hängt am Elektromagneten E_1 ein verhältnismäßig langes Eisengewicht S_1 , während der

Elektromagnet E_2 das kürzere Eisengewicht S_2 trägt. Durch den Induktionsstrom beim Durchfliegen des Geschosses durch die 1. Spule wird über ein Relais der Strom in E_1 unterbrochen; die Folge ist, daß S_1 frei herabfällt. Sobald das Geschoß die 2. Spule erreicht hat, wird auch in E_2 der Strom unterbrochen, so daß nunmehr auch S_2 fällt. Nach einer gewissen Fallstrecke trifft nun S_2 auf die Platte P, die durch den Aufprall

Abb. 30. Schema des Boulengé-Flugzeitmessers

den Hammer H freigibt; dieser schlägt dann in den herabgefallenen Stab S_1 die Zeitmarke Z ein. Auf S_1 befinden sich noch die Nullmarke O, die die Lage von H bei angehängten Gewichten angibt, und die Disjunktionsmarke D, die von H eingeschlagen wird, wenn S_1 und S_2 ihre Fallbewegung gleichzeitig beginnen. Die Zeit t_1 zum Durchfallen der Strecke $h_1 = OZ$, vermindert um die Zeit t_2 zum Durchfallen der Strecke $h_2 = OD$, ergibt die gesuchte Meßzeit t. Nun ist aber auf Grund der Formeln für die Fallbewegung im luftleeren Raum (50b): $t_1 = \sqrt{\frac{2h_1}{g}}$ und $t_2 = \sqrt{\frac{2h_2}{g}}$. Beträgt der Abstand der Spulen s m, dann ist die (mittlere) Geschoßgeschwindigkeit gegeben durch $v = \frac{s}{t} = \frac{s}{t_1 - t_2}$ (m/s).

Beim Oszillographen werden die Durchgänge des Geschosses durch die Spulen unter Zwischenschaltung von Wandlern gleichzeitig mit den Schwingungen einer Stimmgabel auf einem rotierenden Filmstreifen aufgenommen. Zu diesem Zweck (Abb.31a)

Spule o Stimmgabel

Abb.31a. Meßschleife beim Oszillographen befindet sich zwischen den Polen eines starken Magneten M eine Drahtschleife Sch, die ein feines, etwa 1/2 mm² großes und nur wenige Hundertstel Millimeter starkes Spiegelchen Sp trägt. Fließt nun durch diese Schleife ein Strom, so wandern nach den Gesetzen der Elektrizitätslehre die beiden Drähte der Schleife je nach dem Sinn der Stromrichtung nach vorn bzw. nach hinten aus. Das Spiegelchen Sp führt also eine kleine Drehung um die Achse a

aus. — Die ganze Meßapparatur hat nun zwei solcher Meßschleifen; die eine steht mit den Spulen in Verbindung, schlägt also zweimal aus, nämlich beim Durchgang des Geschosses durch die vordere und hintere Spule. Die zweite Meßschleife wird von einem Strom durchflossen, der durch eine Stimmgabel bekannter Frequenz periodisch unterbrochen wird; das Spiegelchen dieser Schleife vibriert also im Takte der Stimmgabelschwingungen. Auf die Spiegel der beiden Meßschleifen fällt je ein Lichtstrahl einer Lichtquelle; diese Strahlen werden nun von den Spiegeln auf eine rotierende Filmtrommel projiziert. Das Photo zeigt dann nach der Aufnahme die Stimmgabelschwingungen und die Geschoßdurchgänge (Abb. 31 b). Aus der Anzahl der Schwingungen läßt sich die

Abb. 31 b. Oszillographenaufnahme und Auswertung

Durchgangszeit t des Geschosses durch die Spulenstrecke s und damit die Geschoßgeschwindigkeit $v = \frac{s}{t}$ bestimmen (vgl.Abb.31 b).

Messung des Gasdrucks. Man bedient sich hierzu einer Methode, die auf der Stauchung von kleinen Kupferzylindern beruht. Abb. 32 zeigt das Prinzip dieser Messung. Im Boden des stark verkupferten Stahlgehäuses G befindet sich der genau einge-

schliffene, spiel- und reibungsfrei bewegliche Stempel S. Zwischen S und dem Oberteil von G befindet sich der auswechselbare kupferne Stauchzylinder Z von genau vorgeschriebenen Dimensionen. Diese ganze Einrichtung wird in dem Ladungsraum des Geschützes zusammen mit dem Pulver untergebracht. Beim Schuß wird durch den Gasdruck der Stempel S in das Innere von G hineingepreßt, wodurch der Zylinder Z entsprechend dem Höchstgasdruck gestaucht wird. Die Größe dieser Stau-

Abb. 32. Meßei für Gasdruckbestimmung

chung wird mit der Mikrometerschraube festgestellt und mit Hilfe von Eichtabellen als Gasdruck (kg/cm²) ausgedrückt. Die Eichung der Stauchkörper erfolgt mittels einer Hebelpresse.

c) Auswertung der Versuchsergebnisse

Die Hauptarbeit besteht nach Abschluß des Schußtafelschießens nun darin, aus den gewonnenen Ergebnissen die Unterlagen für die Schußtafelberechnung in Gestalt der ballistischen Beiwerte zu erhalten. Dazu müssen die Versuchsergebnisse zunächst auf Normalverhältnisse reduziert werden. Für einen großen Teil der das Ergebnis verfälschenden Umstände ist von vorneherein bei der Anlage des Versuchs auf Abstellung geachtet worden (Wind durch Schießen von zwei Seiten, Geschoßgewicht, Pulvertemperatur usw.). Die hauptsächlichsten Fehlerquellen sind nun nur noch Luftgewicht, Lufttemperatur und Fehler im Abgangswinkel. Die ersteren werden ständig gemessen und können also nach einer vorläufigen Rechnung mit Hilfe der Formeln (209/236) ausgeschaltet werden. Der Abgangsfehlerwinkel muß unter Umständen durch einen gesonderten Versuch bestimmt werden.

Nachdem nunmehr die Abweichungen bekannt und ausgeschaltet sind, werden die c-Werte auf der Grundlage des für den vorliegenden Zweck geeigneten theoretischen Ansatzes bestimmt und schließlich über v_0 und φ graphisch ausgeglichen. Sobald man also für die festgehaltene Erhöhung φ_1, \ldots die c-Werte der verschiedenen Ladungen bestimmt hat, werden diese für $\varphi_1 = \text{const.}$, \ldots aufgetragen und ausgeglichen (Abb. 33a). Sodann werden die c-Werte für jede Ladung (d. h. $v_0 = \text{const.}$) abgelesen und neuer-

Abb. 33. Ausgleich des ballistischen Beiwertes über Anfangsgeschwindigkeit und Erhöhung

dings über einem (c, φ) -System für $v_0 = \text{const.}$ aufgetragen und ausgeglichen (Abb. 33b). Nunmehr sind die Unterlagen für die endgültige Schußtafelberechnung vorhanden. Man berechnet mit Hilfe der Formeln, die wir entwickelt haben, Schußweiten, Flugzeit, Endgeschwindigkeiten, Fallwinkel für den Endpunkt der Flugbahn. Darüber hinaus muß aber auch der gesamte Flugbahnverlauf bekannt sein, wie wir noch sehen werden. — Fernerhin müssen die durch Änderung der Anfangsgeschwindigkeit, des Luftgewichts, der Lufttemperatur und durch Wind bedingten Schußweiten- und Seitenabweichungen bekannt sein.

§ 33. Schießbehelfe

a) Die Schußtafel

Die Schußtafel ist meist in Buchform aufgestellt. Sie gliedert sich in mehrere Teile, deren hauptsächlichsten wir anführen wollen.

Der erste Teil ist die sogenannte Kommandotafel, die für irgendein Geschütz nachstehend im Auszug wiedergegeben ist:

Ent- fer- nung	Er- hö- hung	Enge Gabel	Seitenver- schiebung	Zünder- stellung	Flug- zeit	Endge- schwin- digkeit	Fall- winkel
m	Strich	Strich	Strich	Grad v. †.	s	m/s	\mathbf{Strich}
1	2	3	4	5	6	7	8
5000	185	4	+7	100	15,2	262	283
5100	192		8	103	15,6	261	293
5200 5300	198 204	5	- -8 - -8	105	16,1 16,5	$\begin{array}{c} 259 \\ 258 \end{array}$	303 313
5400 5500	210		9 9	109 111	16,9 173	$257 \\ 255$	323 334
		1				200	
5600 5700	223		+ 9 + 10	113	17,8	254	344 255
5800	239	5	+10 $+10$	115	18,7	252	366

Sie enthält neben Erhöhung und Entfernung u. a. noch Angaben über folgende Elemente:

1. Enge Gabel: ein Maß zur Verlegung des Treffpunktes, wenn dieser nicht genau im Ziel liegt.

2. Flugzeit: Sie dient u. a. zum Unterscheiden der Geschoßeinschläge, wenn mehrere Geschütze auf dasselbe Ziel schießen.

3. Endgeschwindigkeit: zur Bestimmung der Eindringtiefe.

4. Angaben über Zünderstellung und evtl. Veränderung der Sprengpunktlage, wenn die Teilung am Zünder verstellt wird.

Im zweiten Teil der Schußtafel befindet sich die sogenannte Libellentafel. Diese dient dazu, Höhenunterschiede zwischen

	Libelleneinstellung bei Entfernung (m)					
Geschütz-Ziel (m)	5000	5500	6000			
+	304	304	303			
- 20	296	297	297			
+ 10	308	307	306			
- 40	292	294	295			
+ 60	312	311	310			
- 00	288	290	291			

Geschütz und Ziel auszuschalten. Befindet sich ein Ziel in der Mündungswaagerechten, so gilt die Erhöhung der Kommandotafel; liegt nun das Ziel um ein gewisses Maß außerhalb der Mündungswaagerechten, so muß sich die Erhöhung ändern. Diese Erhöhungsänderung wird nun an einer besonderen Skala, der "Libelle", eingestellt, deren Nullstellung willkürlich auf "300" festgesetzt ist. "Libelle 310" heißt also: an Erhöhung ist 10– zugelegt. Die Libellenwerte werden aus dem Verlauf der Flugbahnen oder mit der Näherungsformel (147) bestimmt.

Der letzte Teil der Schußtafel enthält die sogenannten B. W. E.-Tafeln. Dabei bedeutet "B. W. E." die Abkürzung für "Besondere und Witterungs-Einflüsse". Sie enthalten die Schußweitenänderungen für Wind, Luftgewichtsänderungen usw. Wir haben einen Teil dieser Tafeln auszugsweise wiedergegeben.

Ent-	Für Längswind m/s ist an Entfernung zu berichtigen m:				Ent-	Für Querwind m/s beträgt die Seitenkor- rektur Strich:			
m	2	4	6	8	m	2	4	6	8
5000 5500 6000	25 30 35	50 60 70	70 85 100	100 115 135	5000 5500 6000	2 2 3	4 5 5	7 7 8	9 10 10
	Für von	ein L	uftgew g/m ³ is	vicht		Für	· 8	tufen	Ge-
Ent- fernung m	Entfe	1,18 1,26	zu b m: 1,14 oder 1,30	1,10 oder 1,34	Ent- fernung m	ist a ber	un Ent ichtige 4	itsänd fernur en 6	erung ng zu m: 8

Es braucht nicht besonders erwähnt zu werden, daß die vorgenannten Tabellen und Tafeln für jede Ladung getrennt aufgeführt sind.

Wir wollen zum Abschluß ein **Beispie**l geben für die Bildung eines Feuerkommandos mit Hilfe der Schußtafel. Das Ziel befinde sich in 5700 m Entfernung, genau südöstlich vom Geschütz, 50 m höher als letzteres. Der Wind wehe mit einer Stärke von 10 m/s aus westlicher Richtung. Das Tagesluftgewicht betrage 1,16 kg/m³. Das Rohr sei alt und ausgeschossen und gebe die v_0 um 4 Stufen zu klein. Die Komponenten des Windes in bezug auf die Schußrichtung sind: Längswind = +7 m/s, Querwind = -7 m/s. Somit erhalten wir folgende Verbesserungen für die Schußweite

Längswind	$(w_x = +7 \text{ m/s})$	+107
Rohrstufe	$(\Delta v_0 = -4 \text{ Stufen})$	<u> </u>
Luftgewicht	$(\delta_B = 1,16 \text{ kg/cm}^3)$	+112
Zusammen		-+ 184 m
Ungestörte Schi	1ßweite	$5700 \mathrm{m}$
Berichtigte Sch	ußweite	$5516 \mathrm{~m}$

Dazu gehört laut Kommandotafel die Erhöhung 218 Strich. Wegen des Höhenunterschiedes ist die Libelle 309. Die Seitenverschiebung beträgt 0 Strich (Summe der Kommandotafelangabe + Seitenwindeinfluß).

b) Das Flugbahnbild, der Artillerierechenschieber und die graphische Schußtafel

Außer der soeben beschriebenen Schußtafel sind noch einige andere Schießbehelfe im Gebrauch. Zur Bekämpfung von Zielen, die weit außerhalb der Mündungswaagerechten liegen, dient das Flugbahnbild, das die einzelnen Flugbahnen für Erhöhungen von 20- zu 20- enthält (Abb. 34). Mit Hilfe dieser Darstellung, die auch die Kurven gleicher Flugzeiten enthält, kann die Erhöhung der Flugbahn festgestellt werden, die durch irgendeinen Punkt des Raumes geht, soweit dieser Punkt überhaupt im Schußbereich der Waffe liegt.

Zur bequemeren Ermittlung der Schießunterlagen dient der sogenannte Artillerie-Rechenschieber, der die im vorigen Abschnitt durchgeführte Rechnung zur Ermittlung des Feuerkommandos mechanisch ausführt. Die in der Schußtafel enthaltenen Verbesserungswerte sind auf Walzen und Hebel übertragen; die einzustellende Erhöhung ergibt sich automatisch, wenn eine bestimmte Folge von Handgriffen ausgeführt wird, mit denen die B. W. E. dem Gerät zugeführt werden.

Athen, Ballistik

Die graphische Schußtafel (Abb. 35) schließlich ist eine andere Form des Flugbahnbildes. Man kann sie sich nach einem Vorschlag von Ammann folgendermaßen entstanden denken: Die Flugbahn mit der kleinsten Erhöhung (0) wird in einer festen Ebene gezeichnet; die Flugbahn mit der Erhöhung ε wird in einer Ebene dargestellt, die um den Winkel ε gegen die 0-Ebene verdreht ist usf. Auf diese Weise entsteht aus allen Flugbahnen der sogenannte "Flugbahnberg". Dieser wird nach dem aus der Kartenkunde bekannten Schichtlinienverfahren in die Ebene projiziert; dadurch entsteht eine ganze Schar von Kurven gleicher Flughöhen über der Mündungswaagerechten. Die einzelnen Flugbahnen stellen sich in diesem Bild als gerade Linien dar. Abb. 35 zeigt schematisch die Konstruktion des Flugbahnberges und der graphischen Schußtafel, die daneben noch einmal in ihrer endgültigen Form dargestellt ist. Mittels des drehbaren Lineals kann zu jedem Punkt des Schußbereichs die Erhöhung festgestellt werden. Die Tafel enthält übrigens auch die Fallwinkel und Flugzeiten. Auf Einzelheiten wollen wir nicht eingehen.

Abb. 35. Die graphische Schußtafel nach Ammann

so hoher Gasdruck entstanden ist, daß der Einpreßwiderstand des Geschosses in die Züge bzw. das Geschoßgewicht und die Reibung bei glatten Rohren (z. B. Flügelminen) überwunden wird. Die Verbrennung erfolgt zunächst schneller als der Druckausgleich durch die Vorwärtsbewegung des Geschosses. Die Folge ist das Ansteigen der Druckkurve (Abb. 36) bis zu einem Maximum, von dem aus die Kurve langsam wieder abfällt. Um die Pulverenergie vollständig auszunutzen, muß die Verbrennung abgeschlossen sein, bevor das Geschoß das Rohr verlassen hat.

Das Hauptproblem der inneren Ballistik umfaßt die Lösung folgender Aufgabe: Für ein Geschütz, von dem Kaliber, Rohrlänge, anfänglicher Verbrennungsraum, Geschoßgewicht, Treibladungsart und -gewicht bekannt sind, soll man die innenballistischen Elemente ermitteln, also besonders Gasdruck, Geschoßgeschwindigkeit, Durchlaufzeit des Geschosses und Verbrennung des Pulvers. Die zeitliche Abhängigkeit dieser Größen und ihr jeweiliger Wert für jede beliebige Lage des Geschosses im Rohr müssen bestimmt werden. dem Maximalgas-Besondere Aufmerksamkeit ist druck und der Mündungsgeschwindigkeit zuzuwenden, da diese Elemente der experimentellen Prüfung am besten zugänglich sind und andererseits für den Geschützkonstrukteur bzw. den Außenballistiker das Hauptinteresse haben. - Die Lösung des Hauptproblems der inneren Ballistik ist bis heute nicht einwandfrei gelungen. Die teils empirisch, teils durch Näherungsannahmen gewonnenen Lösungen weisen ähnliche Mängel auf wie die Lösungen des außenballistischen Problems. Wir wollen versuchen, im folgenden einen Einblick in das innenballistische Problem und die Methoden zu gewähren, die das Problem einer Lösung näherbringen.

Kap. II. Die Grundgleichungen der inneren Ballistik

§ 34. Die Abelsche Gleichung

Für die wirklichen Gase gilt bekanntlich die van der Waalssche Zustandgleichung

(249)
$$\left(p+\frac{\beta}{\mathfrak{v}^2}\right)\cdot(\mathfrak{v}-a)=R\cdot T,$$

in der p den Druck, T die absolute Temperatur, R die Gaskonstante, v das spezifische Volumen des Gases und β und a bestimmte Konstanten bedeuten; a nennt man auch das Kovolumen; dies ist das kleinste Volumen, welches das Gas überhaupt einnehmen kann, wenn die Gasmoleküle immer enger zusammenrücken. Offenbar tritt auf Grund von (249) dieser Fall für T = 0, also am absoluten Nullpunkt ein. Diese Gleichung gilt auch für die Pulvergase, speziell wenn diese in einem allseitig geschlossenen Raum vom Volumen \mathfrak{B}_0 durch Verbrennung einer Pulvermenge vom Gewicht L entstanden sind. Bezeichnen wir mit T_0 die Explosionstemperatur und wiederum mit a das Kovolumen, dann gilt statt (249) unter der für unsere Betrachtungen stets gültigen, erfahrungsmäßigen Annahme $\frac{\beta}{n^2} \sim 0$ die neue Gleichung

$$p = \frac{R \cdot T_0 \cdot L}{\mathfrak{B}_0 - L \cdot a}; \quad (\mathfrak{B}_0 = L \cdot \mathfrak{v}),$$

welche noch etwas vereinfacht werden kann. Die Erfahrung hat nämlich gezeigt, daß für jede Pulverart $R \cdot T_0 = f$ einen konstanten Wert hat. Andererseits bezeichnet man $\frac{L}{\mathfrak{B}_0} = \Delta$ als die Ladedichte; somit geht die obige Gleichung für p über in

$$(250) p = f \cdot \frac{\Delta}{1 - a \cdot \Delta}$$

Diese Gleichung ist bekannt als die "Abelsche Gleichung"⁽¹²²⁾. Hierin nennt man / den "spezifischen Druck" oder auch manchmal die "Pulverkraft". Für die Pulvergase gilt mit guter Näherung $a \sim \frac{\mathbf{b}}{1000}$. Schmitz⁽¹²⁶⁾ hat nachgewiesen, daß die Abelsche Gleichung (250) für Gasdrücke im Bereich 1200 < p $< 4500 \,\mathrm{kg/cm^2}$ gut erfüllt ist. Jedoch treten nach Feststellung anderer Ballistiker z. T. für $p > 3000 \,\mathrm{kg/cm^2}$ bereits erhebliche Abweichungen ein; der Grund ist mit in der Vernachlässigung von β in (249) zu suchen. Die Konstanten a und f sind bestimmbar durch mehrere Verbrennungen verschiedener Pulvermengen in einer geschlossenen Druckbombe und Bestimmung des Höchstgasdruckes. Umgekehrt ist dann mit f auch die Verbrennungstemperatur T_0 bekannt.

§ 35. Die Energiegleichung

Bezeichnen wir wie oben mit L die Pulvermenge und mit y den Bruchteil der verbrannten Pulvermenge, so läßt sich die Abelsche Gleichung schreiben

(251)
$$p = \frac{f \cdot L \cdot y}{\mathfrak{B}_{\mathbf{0}} - L \cdot y \cdot a - \frac{1}{\mathfrak{s}} \cdot L \cdot (1 - y)}$$

In dieser Gleichung bedeutet also $L \cdot (1 - y)$ den unverbrannten Anteil der Pulvermenge; somit ist $\frac{1}{s} \cdot L \cdot (1 - y)$ dessen Volumen, wenn *s* das spezifische Gewicht des Pulvers ist. Andererseits enthält ganz allgemein ein Volumen $\overline{\mathfrak{B}}$, in dem ein Gas unter dem Druck *p* eingeschlossen ist, die potentielle Energie \overline{E} :

(252)
$$\overline{E} = \frac{\overline{p} \cdot \overline{\mathfrak{B}}}{\varkappa - 1},$$

wo $\varkappa = \frac{c_p}{c_v}$ das Verhältnis der spezifischen Wärmen der Gase bei konstantem Druck bzw. konstantem Volumen bedeutet. Somit ergibt (252), auf den Fall der Verbrennung des Bruchteils y einer Pulvermenge L im Volumen \mathfrak{B}_0 angewandt, für dessen potentielle Energie E

(252a)
$$E = \frac{p \cdot \left| \mathfrak{B}_0 - L \cdot y \cdot a - \frac{1}{s} \cdot L \cdot (1 - y) \right|}{\varkappa - 1},$$

und daher, wenn für p der Wert aus (251) eingesetzt wird:

(253)
$$E = \frac{f \cdot L \cdot y}{\varkappa - 1}$$

Bei der Geschoßbewegung im Rohr mit dem Querschnitt q sei seit Beginn der Bewegung die Zeit t verflossen; weiter habe das Geschoß den Weg x zurückgelegt; der anfängliche Verbrennungsraum sei \mathfrak{B}_0 . Das Volumen der Pulvergase ist also zur Zeit t, wenn in diesem Zeitpunkt der Bruchteil y der Pulvermenge Lverbrannt ist,

$$\mathfrak{B}_x = \mathfrak{B}_0 + q \cdot x - L \cdot y \cdot a - \frac{1}{s} \cdot L \cdot (1 - y).$$

Der Energiebetrag E (253) findet sich in verschiedenen Hauptbeträgen wieder, nämlich 1. in der kinetischen Energie $\frac{1}{2} \mu \cdot v^2$ der sich mit der Geschwindigkeit v bewegenden Gesamtmasse μ , 2. in der Arbeit P, die zur Überwindung des Einpreßwiderstandes des Geschosses in die Züge nötig ist, 3. in der potentiellen Energie der im Volumen \mathfrak{B}_x unter dem Druck p stehenden Pulvergase. — Die Energiegleichung lautet somit

$$(254) \begin{vmatrix} f \cdot L \cdot y \\ \hline \mathbf{x} - 1 \end{vmatrix} = \frac{1}{2} \mu v^2 + P + \frac{p \cdot \mathfrak{B}_x}{\varkappa - 1} & \text{oder} \\ f \cdot L \cdot y - p \cdot \left[\mathfrak{B}_0 + q \cdot x - L \cdot y \cdot a - \frac{1}{s} \cdot L \cdot (1 - y) \right] \\ = (\varkappa - 1) \left(\frac{1}{2} \mu \cdot v^2 + P \right) \end{aligned}$$
 Haupt-gleichung der inneren Ballistik

Zu dieser von Résal⁽¹⁰⁶⁾ zuerst hergeleiteten Gleichung sind einige Bemerkungen erforderlich: 1. Die Masse μ ist nicht genau gleich der Geschoßmasse $m = \frac{G_n}{g}$, sondern μ ist eine scheinbare Masse, welche die Energie des Rohrrücklaufs, die Bewegungsenergie der vergasten Ladung und die durch den Drall hervorgerufene Rotationsenergie usw. gleichzeitig berücksichtigt. Man kann aber in vielen Fällen den Rohrrücklauf und die Rotationsenergie vernachlässigen. Dann wird

$$\mu = \frac{G_g + \varepsilon \cdot L}{g}$$

wobei ε ein Ausgleichsfaktor ist, der oft $\varepsilon = \frac{1}{2}$ gesetzt wurde; neuerdings hat Langweiler⁽¹²³⁾ nachgewiesen, daß $\varepsilon = \frac{1}{4}$ ein zweckmäßigerer Wert ist. Infolge mehrerer Vernachlässigungen, z. B. Wärmeabgabe an die Rohrwand, darf man für \varkappa nicht seinen theoretischen Wert $\varkappa = 1,405$ nehmen, sondern einen etwas kleineren, empirisch festzulegenden Wert, den Langweiler⁽¹²³⁾ wie folgt bestimmt: Die Energie *E* muß gleich dem Kaloriengehalt der verbrannten Pulvermenge sein, d. h. es gilt, wenn *U* die kalorische Energie des Pulvers ist,

(255)
$$E = \frac{f \cdot L \cdot y}{\varkappa - 1} = U \cdot L \cdot y$$
, d. h. $\varkappa = 1 + \frac{f}{U}$

f und U sind experimentell bestimmbar. So fand sich z. B. für Nitroglyzerinpulver $\varkappa = 1,18$; für Nitrozellulosepulver $\varkappa = 1,21$

§ 36. Das Verbrennungsgesetz des Pulvers

In der Praxis hat sich gezeigt, daß die Verbrennungsgeschwindigkeit des Pulvers in erster Linie vom herrschenden Druck, von Größe und Form des Pulvers, sowie von dessen chemischen und physikalischen Eigenschaften abhängt. Die quantitative Festlegung dieser Zusammenhänge wird durch das Verbrennungsgesetz formuliert. Nach Piobert⁽¹⁰⁷⁾ geht das Abbrennen des einzelnen Pulverkorns so vor sich, daß die Verbrennung in "parallelen Schichten" erfolgt, so also, daß in einem bestimmten Augenblick die Zersetzung um dieselbe Wegstrecke von jedem Punkt der Oberfläche und senkrecht zu ihr fortgeschritten ist, wobei der herrschende Druck maßgeblich ist. Ist nach einer Zeit von t Sekunden die Schichtdicke e abgebrannt, so ist $\dot{e} = \frac{de}{dt}$ die lineare Verbrennungsgeschwindigkeit des Korns. Vieille⁽¹²⁴⁾schrieb das Verbrennungsgesetz daher in der Form

(256)
$$\dot{e} = \lambda \cdot p^k$$

 λ und k sind zwei empirisch festzulegende Konstanten; k wird verschieden festgesetzt. Die Hauptvertreter der innenballistischen Theorien wählen $k = \frac{2}{3}$ (Gossot und Liouville) bzw. k = 1 (Charbonnier, Schmitz, Cranz). λ ist abhängig vom Pulver und kann durch Bestimmung der Verbrennungszeit τ_0 eines Pulverkorns der Dicke *a* unter konstantem Druck p_0 bestimmt werden. Nach (256) ist also:

(256 a)
$$\lambda = \frac{a}{2\tau_0} \cdot p_0^{-k}$$

Der Faktor 1/2 auf der rechten Seite dieser Gleichung muß gesetzt werden, da ja die Verbrennung gleichzeitig von der oberen und unteren Fläche des Korns her erfolgt.

Betrachten wir nunmehr ein Pulverkorn von der Form eines Parallelepipeds mit den Kanten a < b < c; dann beträgt das anfängliche Kornvolumen $a \cdot b \cdot c$. Nach der Zeit t ist von allen Seiten her das Stück e abgebrannt; folglich beträgt nunmehr das Kornvolumen nur noch $(a-2e) \cdot (b-2e) \cdot (c-2e)$. Somit erhalten wir für den Bruchteil y des verbrannten Pulvers

$$y = \frac{a \cdot b \cdot c - (a - 2e) \cdot (b - 2e) \cdot (c - 2e)}{a \cdot b \cdot c} = 2\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \cdot e$$
$$-4\left(\frac{1}{a \cdot b} + \frac{1}{a \cdot c} + \frac{1}{b \cdot c}\right) \cdot e^2 - \frac{8}{a \cdot b \cdot c} \cdot e^3.$$

Ähnlich weist man leicht nach, daß die nachstehende, dieser Gleichung analoge Beziehung (257) mit den allgemeinen Koeffizienten a_1 , β_1 , γ_1 :

(257)
$$y = a_1 \cdot e + \beta_1 \cdot e^2 + \gamma_1 \cdot e^3$$

allgemein bei beliebigen Pulverformen gilt. Damit ist der Bruchteil y bekannt, der in den Gleichungen (251/254) auftritt.

Nun ist aber von vielen Ballistikern darauf hingewiesen worden, daß beim Abbrennen ein Zerfall der einzelnen Pulverkörner eintritt, so daß in (256) λ sich wegen der durch den Zerfall bedingten Kornvermehrung verändert. Andererseits liegen die einzelnen Pulverkörner nicht frei, sondern berühren sich in verschiedener Weise; auch dadurch wird die Verbrennungsgleichung gestört. Um diese Schwierigkeiten zu umgehen, führt Charbonnier⁽¹⁰⁹⁾ ein Verbrennungsgesetz ein, das sich auf die ganze Ladung, statt wie oben auf das einzelne Pulverkorn bezieht. Er schreibt

(258)
$$\frac{dy}{dt} = \dot{y} = A \cdot \varphi(y) \cdot p^k$$

Hierin wird k im allgemeinen k = 1 gesetzt, während A eine für das betreffende Pulver gegebene charakteristische Konstante ist. $\varphi(y)$ ist eine von der Pulverform abhängige Funktion, die von Charbonnier in der Form $(1-y)^{\beta_2}$ oder y^{β_3} angesetzt wird, je nachdem, ob das Pulver von innen her (Röhren!) oder von außen her abbrennt. Schmitz⁽¹²⁶⁾ macht über die Funktion $\varphi(y)$ keine Voraussetzungen, sondern will ihren Verlauf durch Verbrennungsversuche in geschlossener Bombe bestimmen. Übrigens kann man (258) ohne Schwierigkeit aus (257) herleiten; dabei ergibt sich bei Betrachtung bestimmter Pulverformen auch sofort die von Charbonnier gewählte Form der Verbrennungsfunktion $\varphi(y)$.

§ 37. Das System der Hauptgleichungen der inneren Ballistik

Um die Bewegung des Geschosses durch das Rohr festzulegen, muß noch die Bewegungsgleichung abgeleitet werden. Das Gleichgewicht der Kräfte wird durch das folgende Newtonsche Bewegungsgesetz

(259)
$$\mu \cdot \frac{d^2 x}{dt^2} = \mu \cdot \ddot{x} = q \cdot p$$
 (q = Rohrquerschnitt)

ausgedrückt; dabei sind allerdings die Reibungskräfte vernachlässigt worden. — Die Formel (259) läßt noch die folgenden Veränderungen zu

(259a)
$$\ddot{x} = \frac{dv}{dt} = v \cdot \frac{dv}{dx} = \frac{q \cdot p}{\mu}.$$

Stellen wir die Gleichungen der inneren Ballistik noch einmal zusammen, so ergeben sich die folgenden simultanen Gleichungen:

$$\begin{aligned} f \cdot L \cdot y - p \cdot \left| \mathfrak{B}_{0} + q \cdot x - L \cdot y \cdot a - \frac{L}{s} \cdot (1 - y) \right| \\ &= (\varkappa - 1) \cdot \left(\frac{\mu}{2} \cdot v^{2} + P \right) \quad \text{(Energiegleichung)} \\ \end{aligned} \\ (260) \\ \text{(I.)} \quad \dot{e} = \frac{a}{2\tau_{0}} \cdot \left(\frac{p}{p_{0}} \right)^{k}; \quad y = a_{1} \cdot e + \beta_{1} \cdot e^{2} + \gamma_{1} \cdot e^{3} \quad \text{oder} \\ \text{(II.)} \quad \dot{y} = A \cdot \varphi(y) \cdot p^{k} \quad \text{(Verbrennungsgleichung)} \\ \ddot{x} = \dot{v} = v \cdot \frac{dv}{dx} = \frac{q \cdot p}{\mu} \quad \text{(Bewegungsgleichung)} \end{aligned}$$
Diese Gleichungen werden teilweise noch vereinfacht durch folgende Annahmen: $\frac{1}{s}$ kann näherungsweise durch α ersetzt werden; P kann vernachlässigt werden, wenn man die Weg-Druck-Kurve nicht bei (p = 0, x = 0), sondern bei $(x = 0, p = p_0 \pm 0)$ beginnen läßt. Dann lautet die vereinfachte Energiegleichung

(260a)
$$f \cdot L \cdot y - p \cdot [\mathfrak{B}_0 + q \cdot x - a \cdot L] = (\varkappa - 1) \cdot \frac{\mu}{2} \cdot v^2.$$

In def Verbrennungsgleichung nimmt man gewöhnlich $k = \frac{2}{3}$ bzw. k = 1.

Kap. III. Die Lösungsverfahren zum Hauptproblem der inneren Ballistik

§ 38. Integrabilität der Hauptgleichungen der inneren Ballistik. Lösungen von Krupp-Schmitz und Cranz

Wir wollen nun das System (260) hinsichtlich seiner Integrabilität und seiner Lösungen untersuchen. Dabei werden zwei verschiedene Gesichtspunkte möglich sein: 1. Zurückführung des Problems auf Quadraturen; genaue Lösung. 2. Genäherte Lösung der Differentialgleichungen; dafür aber Gewinnung geschlossener mathematischer Ausdrücke.

Der 1. Fall ist der allgemeinere, aus dem sich die Näherungslösungen (2. Fall) herleiten lassen, wenn das auch von den verschiedenen Autoren nicht immer gemacht worden ist.

Wir wenden unsere Aufmerksamkeit zunächst dem System (260) mit der Verbrennungsgleichung (II) zu. Hierin werde P = 0 und k=1 gesetzt. Dann ist

$$p = \frac{1}{A \cdot \varphi(y)} \cdot \dot{y}.$$

Aus der Bewegungsgleichung $\dot{v} = \frac{q}{\mu} \cdot p$ folgt also durch Einführung des obigen Wertes von p

$$dv = \frac{q}{\mu} \cdot \frac{1}{A \cdot \varphi(y)} \cdot dy$$
,

d. h. v ist als reine Funktion von y darstellbar: $v = \frac{q}{\mu} \cdot \xi(y)$. Nunmehr folgt aus der Substitution

$$J = \mathfrak{B}_0 + q \cdot x - L \cdot y \cdot a - \frac{L}{s} \cdot (1 - y), \quad d. h.$$
$$dJ = q \cdot dx - L \cdot \left(a - \frac{1}{s}\right) \cdot dy$$

 \mathbf{sofort}

$$p = \frac{\mu}{q} \cdot \frac{dv}{dt} = \frac{\mu}{q} \cdot v \cdot \frac{dv}{dx} = \frac{\mu \cdot v \cdot dv}{dJ + L \cdot \left(a - \frac{1}{s}\right) \cdot dy}$$
$$= \frac{q^2}{\mu} \cdot \frac{\xi(y) \cdot \xi'(y) \cdot dy}{dJ + L \left(a - \frac{1}{s}\right) dy}$$

Dies führen wir in die Résalsche Energiegleichung (mit P = 0) ein. Wenn wir noch die Substitution

$$f \cdot L \cdot y - \frac{\varkappa - 1}{2} \cdot \frac{q^2}{\mu} \cdot \xi^2(y) = \psi(y)$$

vornehmen, so geht die Energiegleichung schließlich über in die lineare Differentialgleichung mit Störungsglied:

(261)
$$\left|\frac{dJ}{dy} - \frac{1}{\varkappa - 1} \cdot \frac{f \cdot L - \psi'(y)}{\psi(y)} \cdot J = L \cdot \left(\frac{1}{s} - a\right)\right|$$

Das Integral dieser Differentialgleichung ist unschwer anzugeben. Es lautet:

(262)
$$J = \frac{\frac{f \cdot L}{\varkappa - 1} \cdot \int_{-\frac{y}{\psi(y)}}^{\frac{y}{\psi(y)}}}{\left(\frac{\psi}{\psi_0}\right)^{\frac{1}{\varkappa - 1}}} \cdot \left[J_0 + L \cdot \left(\frac{1}{s} - a\right) \int_{\frac{y}{\psi_0}}^{\frac{y}{2}} \frac{\frac{f \cdot L}{1 - \varkappa} \cdot \int_{-\frac{y}{\psi(y)}}^{\frac{y}{\psi(y)}}}{\left(\frac{\psi}{\psi_0}\right)^{\frac{1}{\varkappa - 1}}} \cdot dy\right].$$

Diese Gleichung ist die Grundlage der Lösungen von Krupp-Schmitz⁽¹¹⁰⁾ und von Cranz⁽¹¹⁰⁾. Schmitz⁽¹¹⁰⁾ verwendet sie allerdings nicht in dieser Form, sondern geht von einer ersten Lösung aus, die er aus der vereinfachten Energiegleichung (260a) erhält. Diese erste Lösung ergibt, in (260) eingesetzt, eine verbesserte zweite Lösung usw. (vgl. auch das Verfahren [§ 19, b] der äußeren Ballistik). Cranz⁽¹¹⁰⁾ hat nachgewiesen, daß dieses Verfahren auf die Lösung (262) führt.

Cranz⁽¹¹⁰⁾ hat 1918 ein graphisches Lösungsverfahren entwickelt, das ebenfalls vom System (260) ausgeht, jedoch P im Gegensatz zu den vorangehenden Entwicklungen nicht veranchlässigt. Man überzeugt sich aber leicht, daß dadurch der Typus der Differentialgleichung (261) nicht verändert wird. Die auftretenden Integrale usw. will Cranz ⁽¹¹⁰⁾ graphisch ermitteln; dazu kann z. B. das in [§ 18, b] für den Fall der äußeren Ballistik geschilderte graphische Integrationsverfahren herangezogen werden. Natürlich könnten die Integrale auch numerisch ausgewertet werden, z. B. nach dem Verfahren von Runge-Kutta [§ 19, a] oder dem Verfahren der wiederholten Integration [§ 19, b].

Wir wollen im folgenden noch 2 Lösungsmethoden schildern, die zu geschlossenen Ausdrücken führen und darüber hinaus als Prototypen zweier Lösungsprinzipien besonderes Interesse verdienen.

§ 39. Die Lösung des innenballistischen Problems durch Charbonnier

Obgleich es möglich ist, die Lösung von Charbonnier aus der obigen Lösung (262) abzuleiten, wollen wir aber lieber die Entwicklung von Anfang an durchführen. Charbonnier⁽¹⁰⁹⁾ benutzt folgendes System von Gleichungen:

(263)
$$\begin{cases} p \cdot (\mathfrak{B}_0 + q \cdot x - a \cdot L) + \frac{\varkappa - 1}{2} \cdot \mu \cdot v^2 = f \cdot L \cdot y \\ \dot{y} = A \cdot \varphi(y) \cdot p \\ \mu \cdot \ddot{x} = \mu \cdot \dot{v} = q \cdot p. \end{cases}$$

Wie oben erhalten wir zunächst $v = \frac{q}{\mu} \cdot \int_{y}^{y} \frac{dy}{A \cdot \varphi(y)} = \frac{q}{\mu \cdot A} \cdot \zeta(y).$

Dies Integral ist von $y_0 \neq 0$ bis $y \leq 1$ zu erstrecken, da die Bewegung des Geschosses erst eintritt, wenn nach Verbrennung einer bestimmten Pulvermenge y_0 ein Druck p_i entstanden ist, der den Einpreßwiderstand überwindet. Nun ist

$$J = \mathfrak{B}_{\mathbf{0}} + q \cdot x - L \cdot \alpha, \quad \text{d. h.} \quad dJ = q \cdot dx \quad \text{und}$$
$$\mu \cdot v \cdot dv = q \cdot p \cdot dx = p \cdot dJ.$$

Die Energiegleichung ergibt somit schließlich

$$\mu \cdot v \cdot J \cdot \frac{d v}{dJ} + \frac{\mu}{2} \cdot (\varkappa - 1) \cdot v^2 = f \cdot L \cdot y$$

oder, wenn v durch $\zeta(y)$ ausgedrückt wird:

(264)
$$\frac{\varkappa - 1}{2} \cdot \ln\left(\frac{J}{J_0}\right) = r \cdot \int_{y_0}^{y} \frac{\zeta(y)}{y \cdot \varphi(y)} \cdot \frac{dy}{1 - r \cdot \frac{\zeta^2(y)}{y}},$$

wo zur Abkürzung

(264 a)
$$r = \frac{\varkappa - 1}{2} \cdot \frac{\mu}{f \cdot L} \cdot \left(\frac{q}{\mu \cdot A}\right)^2$$

gesetzt wurde. In (264) hat, wie hier ohne Beweis angegeben werde, $r \cdot \frac{\zeta^2(y)}{y}$ stets einen sehr kleinen Wert, so daß das Integral entwickelt werden kann. Mit den Substitutionen

$$\frac{J_0}{J} = \Theta; \quad \frac{1}{1-r\cdot\frac{\zeta^2(y)}{y}} = 1 + r\cdot\frac{\zeta^2(y)}{y} + r^2\cdot\frac{\zeta^4(y)}{y^2} + \cdots$$

erhalten wir

$$(265) \begin{vmatrix} -\frac{\varkappa - 1}{2} \cdot \ln \Theta = r \cdot \int_{y_0}^{y} \frac{\zeta(y)}{y \cdot \varphi(y)} \cdot dy + r^2 \cdot \int_{y_0}^{y} \frac{\zeta^3(y)}{y^2 \cdot \varphi(y)} dy + \cdots \\ = r \cdot Z_1(y, y_0) + r^2 \cdot Z_2(y, y_0) + \cdots \end{vmatrix}$$

Diese Entwicklung ist allerdings nur langsam konvergent. Um die Konvergenz zu verschärfen, wenden wir folgende Transformation an:

$$1 - \Theta^{\frac{n-1}{2}} = 1 - e^{-D} = D - \frac{D^2}{2!} + \frac{D^3}{3!} - + \cdots$$

Setzen wir für D seinen Wert gemäß (265) ein, so folgt

(265 a)
$$1 - \Theta^{\frac{x-1}{2}} = r \cdot Z_1(y, y_0) + r^2 \cdot \left| Z_2(y, y_0) - \frac{Z_1^2(y, y_0)}{2} \right| + \cdots$$

In dieser Gleichung sind die Koeffizienten von r^2 , r^3 , ... gleich Null, wenn $\varphi(y) = \text{const} = 1$ gesetzt werden kann; in allen anderen Fällen sind sie sehr klein, und da $r^3 < r^2 < 1$, genügt in (265a) Beschränkung auf das erste Glied. Folglich wird

(266)
$$1 - \Theta^{\frac{\varkappa - 1}{2}} = r \cdot Z_1(y, y_0) \quad \text{oder}$$
$$\ln(\mathfrak{B}_0 + q \cdot x - \alpha \cdot L)$$
$$= \ln(\mathfrak{B}_0 - \alpha \cdot L) - \frac{2}{\varkappa - 1} \cdot \ln[1 - r \cdot Z_1(y, y_0)]$$

Damit ist also der vom Geschoß im Rohr zurückgelegte Weg als Funktion des verbrannten Pulveranteils erhalten.

Es müssen nun noch die übrigen innenballistischen Elemente ermittelt werden: Aus der ersten Gleichung des Systems (263) folgt sofort der Gasdruck p, da

$$y, J = \mathfrak{B}_0 + q \cdot x - a \cdot L$$
 und $v = \frac{q}{\mu \cdot A} \cdot \zeta(y)$

bekannt sind. Mit Berücksichtigung von (266) läßt sich dies aber noch vereinfachen. Man weist nach, daß schließlich

(267)
$$p = \frac{f \cdot L \cdot y}{J} \cdot \Theta^{\frac{x-1}{2}}$$

wird. Aus dieser Gleichung läßt sich auch der Maximaldruck ermitteln; in diesem Falle wird (267) am zweckmäßigsten logarithmisch differenziert, darin dp=0 gesetzt und dann mit (264) kombiniert. Man bestimmt damit J_{\max} und y_{\max} für die Stelle p_{\max} :

(267a)
$$p_{\max} = f \cdot L \cdot \frac{y_{\max}}{J_{\max}} \cdot \Theta_{\max}^{\frac{\kappa-1}{2}}.$$

256 Kap. III. Die Lösungsverfahren zum Hauptproblem

Die vorstehenden Formeln gelten nur bis zur vollständigen Verbrennung des Pulvers (y = 1). Hat das Geschoß in diesem Augenblick das Rohr noch nicht verlassen, so wird mit den Formeln für eine polytropische Zustandsänderung der Pulvergase weitergerechnet, also

(268)
$$p \cdot J^{\varkappa} = p_1 \cdot J_1^{\varkappa}; \ \frac{\mu v^2}{2} = \frac{\mu \cdot v_1^2}{2} + \frac{p_1 \cdot J_1}{\varkappa - 1} \cdot \left[1 - \left(\frac{J_1}{J}\right)^{\varkappa - 1}\right]$$

Darin bedeuten die Elemente mit dem Index 1 die Werte für die Stelle y = 1. — Schließlich ist $dt = \frac{dx}{v}$ oder $t = \int \frac{dx}{v}$.

Beispiel. Das folgende numerische Beispiel ist dem Aufsatz von-Bollé⁽¹⁰⁸⁾ im "Handbuch der Physikal. u. Techn. Mechanik" entnommen. — Es handle sich um ein 8-mm-Gewehr, bei dem $L = 0,0032 \, \mathrm{kg}$; $G_g = 0,010 \, \mathrm{kg}$ und $\mathfrak{B}_0 = 0.38 \cdot 10^{-5} \, \mathrm{m}^3$ ist; der gesamte Gasraum \mathfrak{B}_e (ganzes Rohr) betrage $0.38 \cdot 10^{-4} \, \mathrm{m}^3$. Ferner sei $a = 0.9 \cdot 10^{-3} \, \mathrm{(m}^3)$; $\varkappa = 1.2$ und f = 93000 (m). Somit wird

$$\mu = \frac{0,010 + 0.5 \cdot 0.0032}{9.81} = 0,001182.$$

Die Mündungsgeschwindigkeit sei zu $v_0 = 885 \text{ m/s}$ gemessen worden. Zur Vereinfachung der Rechnung setzen wir $y_0 = 0$; $\varphi(y) = 1 = \text{konst.}$, so daß $\zeta(y) = Z_1(y, y_0) = y$ wird.

Man findet durch Elimination von $\frac{q}{\mu \cdot A}$ aus den so entstehenden Gleichungen

(269)
$$v = \frac{q}{A \cdot \mu} \cdot y$$
 und $1 - \Theta^{\frac{\varkappa - 1}{2}} = r \cdot y = \frac{\varkappa - 1}{2} \cdot \frac{\mu}{f \cdot L} \cdot \left(\frac{q}{A \cdot \mu}\right)^2 \cdot y$

sofort y = 1,086. Das bedeutet, daß wegen y > 1 das Pulver bereits verbrannt ist, bevor das Geschoß die Rohrmündung erreicht hat. Es müssen daher zunächst die Formeln (268) benutzt werden, um die Elemente an der Stelle y = 1 zu berechnen. Für $0 \leq y \leq 1$ gelten dann die Formeln (263-267), für $y \geq 1$ die Formeln (268). Nach (268) ist mit Benutzung von (267) und (269) also nach Elimination von p_1 und v_1 :

$$\frac{\mu \cdot v_0^2}{2} = \frac{f \cdot L}{\varkappa - 1} \cdot \left[1 - \frac{(J_0 \cdot J_1)^2}{J_e^{\varkappa - 1}} \right].$$

Wegen (266) ist aber

$$\left(\frac{J_0}{J_1}\right)^{\frac{\varkappa-1}{2}} = 1 - r$$
 oder $J_1^{\frac{\varkappa-1}{2}} = \frac{J_0^{\frac{\varkappa-1}{2}}}{1 - r}$

und somit

$$\frac{\mu \cdot v_0^2}{2} = \frac{f \cdot L}{\varkappa - 1} \cdot \left[1 - \left(\frac{J_0}{J_e}\right)^{\varkappa - 1} \frac{1}{1 - r}\right].$$

Aus dieser Gleichung kann r bestimmt werden; man erhält r = 0,2994. Mit (269) ergibt sich dann sofort $v_1 = 868,2$ m/s. Nunmehr kann auch der Maximalgasdruck bestimmt werden. Setzt man in (267) den aus (266) folgenden Ausdruck

$$1 - \theta^{\frac{x-1}{2}} = r \cdot y, \quad d. h. \quad J = J_0 \cdot (1 - r \cdot y)^{\frac{2}{1-x}}$$

ein, so entsteht

$$p = \frac{f \cdot L}{J_0} \cdot y \cdot \langle 1 - r \cdot y \rangle^{\frac{\kappa+1}{\kappa-1}}.$$

Das Gasdruckmaximum ist an der Stelle y_{max} vorhanden, wo $\frac{dp}{dx} = 0$ wird. Durch Differentiieren erhalten wir sofort

$$\frac{f \cdot L}{J_0} \cdot \left| \left(1 - r \cdot y\right)^{\frac{\varkappa + 1}{\varkappa - 1}} - r \cdot y \cdot \frac{\varkappa + 1}{\varkappa - 1} \cdot \left(1 - r \cdot y\right)^{\frac{2}{\varkappa - 1}} \right| = 0,$$

d. h.
$$y_{\max} = \frac{1}{12 \cdot r}$$
 oder $y_{\max} = 0,2783$.

Schließlich ist also $p_{\max} = 3,65 \cdot 10^7 \text{ kg/m}^2 = 3,65 \cdot 10^3 \text{ kg/cm}^2$ oder, da 1,0333 kg/cm² = 1 at ist: $p_{\max} = 3532$ at. Der experimentell bestimmte Wert war 3510 at.

Bollé führt dieses Beispiel noch weiter und berechnet die Elemente für eine Verkürzung des Laufes um 26 cm. Schließlich zeigt er noch, wie die Berechnung erfolgt, wenn die Einpreßarbeit des Geschosses, (also $y_0 \pm 0$) berücksichtigt wird.

§ 40. Das halbempirische Lösungsverfahren von Gossot und Liouville

Die Lösung des Hauptsystems der inneren Ballistik wird von Gossot und Liouville⁽¹¹²⁾ auf der Grundlage des Verbrennungsgesetzes (256/256a):

$$e = \frac{a}{2\tau_0} \cdot \int \left(\frac{p}{p_0}\right)^{\frac{2}{3}} \cdot dt = \frac{a}{2} \cdot z, \quad \text{wo} \quad z = \frac{1}{\tau_0} \cdot \int \left(\frac{p}{p_0}\right)^{\frac{2}{3}} \cdot dt$$

und der aus (257) folgenden allgemeinen Beziehung

$$y = G(e) = F(z)$$

durchgeführt. Somit wird folgendes System von Differentialgleichungen verwandt:

(270)
$$\begin{cases} \mu \cdot \ddot{x} = q \cdot p & \text{und somit:} \\ \tau_0 \cdot \dot{z} = \left(\frac{\mu}{q \cdot p_0} \cdot \ddot{x}\right)^{\frac{2}{3}} \\ \frac{1}{q} \cdot [\mathfrak{B}_0 + q \cdot x - \alpha \cdot L] \cdot \ddot{x} + \frac{\varkappa - 1}{2} \cdot \dot{x}^2 = f \cdot \frac{L}{\mu} \cdot F(z). \end{cases}$$

In diesem System werden nun folgende Substitutionen vorgenommen:

(270a)
$$\begin{cases} \frac{1}{q} \cdot [\mathfrak{B}_{0} + q \cdot x - a \cdot L] = H \cdot X & \text{mit} \quad H = \frac{p_{0}^{2} \cdot \tau_{0}^{3} \cdot q^{2}}{\mu^{2}} \\ \text{und} \quad v = \frac{dx}{dt} = H \cdot \frac{dX}{dt}; \quad \ddot{x} = \dot{v} = \frac{dv}{dX} \cdot \frac{dX}{dt} = \frac{v}{H} \cdot \frac{dv}{dX} \end{cases}$$

Aus (270) entsteht dann

(271)
$$X \cdot v \cdot \frac{dv}{dX} + \frac{z}{1} \cdot v^2 = f \cdot \frac{L}{\mu} \cdot F(z)$$
 und $v^{\frac{1}{3}} \cdot \frac{dz}{d\overline{X}} = \left(\frac{dv}{d\overline{X}}\right)^{\frac{2}{3}}$.

Hierin werden nun weitere Substitutionen eingeführt. Zunächst wird jedoch der Ausdruck (257) für den verbrannten Pulveranteil y ein wenig verändert. Ersetzt man nämlich hierin e durch die anfangs abgeleitete Beziehung

$$e=\frac{a}{2}\cdot z,$$

so ergibt sich die neue Form

(272)
$$y = \bar{a} \cdot z \cdot (1 - \bar{\lambda} \cdot z - \bar{\mu} \cdot z^2).$$

Setzen wir also

(272 a)
$$\boldsymbol{\xi} = \overline{\lambda}^3 \cdot X \cdot \left(\frac{f \cdot \bar{a} \cdot L}{\bar{\lambda} \cdot \mu}\right)^{\frac{1}{2}}; \quad Y = \overline{\lambda} \cdot z; \quad w = \frac{\overline{\lambda} \cdot \mu}{f \cdot \bar{a} \cdot L} \cdot v^2,$$

so ergibt sich schließlich

(273)
$$\begin{cases} \xi \cdot \frac{dw}{d\xi} + (\varkappa - 1) \cdot w = Y \cdot \left(1 - Y - \frac{\overline{\mu}}{\overline{\lambda}^3} \cdot Y^2\right) \\ 4 \cdot w^{\frac{3}{2}} \cdot \left(\frac{dY}{d\xi}\right)^3 = \left(\frac{dw}{d\xi}\right)^2 \end{cases}$$

mit den Anfangsbedingungen x = 0: $\xi = \xi_0$, w = Y = 0.

Nun ist aber, wie Gossot und Liouville nachweisen, $\frac{\bar{\mu}}{\bar{\lambda}^2}$ und auch $\frac{\bar{\mu}}{\bar{\lambda}^2}$. Y durchweg sehr klein, so daß dieses Glied in (273) stets vernachlässigt werden kann. Im System (273) treten somit nur reine Zahlen auf, die von den speziellen Bedingungen der Aufgabe unabhängig sind und durch die Transformationen (272a) und (270a) die Lösung des speziellen Problems liefern. Das System (273) liefert somit die allgemeine Lösung

(273 a)
$$w = \Psi(\xi, \xi_0),$$

eine Lösung, die geometrisch durch eine Fläche darstellbar ist. Liegt also eine große Anzahl von Versuchen unter verschiedensten Bedingungen vor, so können mittels der Transformationen (270a) und (272a) ebenso viele Flächenpunkte (w, ξ, ξ_0) berechnet werden. Die Lösung des Systems (273) ist also empirisch durchführbar.

Gossot und Liouville haben diese Eigenschaft von (273) ausgenützt und auf Grund langjähriger Erfahrungen und Versuche in Frankreich die Fläche $w = \Psi(\xi, \xi_0)$ konstruiert. Zur Bestimmung der wesentlichen Elemente der inneren Ballistik geben sie dann empirische Formeln an, die nachstehend wiedergegeben werden. Zur Vereinfachung dieser Formeln schreiben sie

(274)
$$\xi = \xi_0 \cdot 10^l; \quad \log^{10} B = 0.3456 - 2; \quad u = B \cdot (\xi_0^2 \cdot l^3)^{\frac{1}{8}}.$$

Für die Mündungsgeschwindigkeit v_0 gelten dann die Formeln

(275)
$$\begin{cases} v_0^2 = A_1 \cdot \frac{L}{G_g} \cdot l \cdot f(u) \\ \text{oder} \\ v_0^2 = A_2 \cdot \frac{L}{G_g} \cdot l \cdot [f(u)]^{\frac{1}{2}} \\ \text{oder} \\ v_0^2 = A_3 \cdot \frac{L}{G_g} \cdot l \cdot u \\ \text{Darin ist} \\ \log A_1 = 9,172 \text{ für } 0 < u < 0,246; \\ \log A_2 = 8,806 \text{ für } 0,246 < u < 0,429; \\ \log A_3 = 8,546 \text{ für } 0,429 < u. \end{cases}$$

Wegen (274) kann man hierin auch schreiben: $l = \log \frac{\mathfrak{B}_M - L \cdot a}{\mathfrak{B}_0 - L \cdot a}$, wenn \mathfrak{B}_M das Gesamtvolumen des Rohres bis zur Mündung einschließlich Ladungsraum ist. An der Stelle des Gasdruckmaximums, dessen Elemente mit dem Index (max) bezeichnet seien, gelten schließlich die empirischen Formeln

$$(276) \left\{ \begin{array}{l} p_{\max} = K \cdot s \cdot \left(\frac{L}{(\overline{G}_{g})}\right)^{\frac{3}{10}} \cdot \xi_{0}^{\frac{2}{5}}; \ \log K = 4,10; \ s = \frac{L}{\mathfrak{B}_{0} - a \cdot L}; \\ \log \frac{\mathfrak{B}_{0} + q \cdot x_{\max} - L \cdot a}{\mathfrak{B}_{0} - L \cdot a} = 1,6 - \frac{1}{3} \log \xi_{0}. \end{array} \right.$$

Beispiel. Wir nehmen wiederum das bereits oben berechnete Beispiel des 8-mm-Gewehres. Dabei war also $\mathfrak{B}_0 = 0,0038$ Liter; $\mathfrak{B}_M = 0,038$ Liter; $\mathcal{G}_g = 0,010$ kg; L = 0,0032 kg; $a \sim 0,9,* v_0 = 8850$ dm/s [Gossot *Man beachte hier die Dimensionen der Konstanten, die nach der Theorie von Gossot und Liouville anders ausfallen als im Beispiel zur Theorie von Charbonnier, da erstere in (dm, kg, s) rechnen und die Gasdrücke in at (statt kg/m²) angeben. Daher ist wegen der Definition $f = R \cdot T_0$ auch f (Gossot-Liouville) = f (Charbonnier) $\cdot \frac{1}{10,333}$; hier wird also f = 9000.

und Liouville nehmen (dm/kg/sec) als Maßeinheiten]. Dann wird für die Mündung: l = 1,585; nach der ersten Formel (275) also f(u) = 0,1037, d. h. $u_1 = 0,1176$ oder $u_2 = 0,8824$. Der letztere Wert ist wegen der dritten Gleichung (275) unmöglich. Daraus berechnet sich mit (274) sofort $B \cdot (\xi_0^2 \cdot l^3)^{\frac{1}{8}}$, daraus ξ_0 und somit schließlich aus (276) $p_{\max} = 3408$ at, während gemessen war $p_{\max} = 3510$ at.

Übrigens haben Gossot und Liouville die empirischen Formeln (274/276) verschiedentlich geändert. Wir können nicht näher darauf eingehen, da es ja an dieser Stelle hauptsächlich darauf ankam, die empirische Lösungsmöglichkeit des Problems zu zeigen. Wir werden noch sehen, daß in anderer Weise auch von Heydenreich ein empirische Lösung vorgeschlagen wurde.

§ 41. Hinweis auf andere ältere und neuere Lösungen

Die ersten mathematischen Formeln zum Hauptproblem der inneren Ballistik wurden 1876 von Sarrau⁽¹²⁹⁾ auf thermodynamischer Grundlage entwickelt. Ingalls⁽¹¹³⁾ (1903) geht von einer empirisch begründeten Näherungsannahme über den Ort des Maximalgasdrucks aus; im übrigen wird das System (270) verwandt, allerdings mit dem Exponenten $k = \frac{1}{2}$ im Verbrennungsgesetz (256). Hadcock⁽¹³⁰⁾ ersetzt die Résalsche Hauptgleichung durch eine empirische Gleichung der Form

$$a = \frac{1}{s}; \ p \cdot J^{1,1} = k_0 \cdot (L \cdot y)^{1,1} + k_0' \cdot (L \cdot y_0)^{1,1} \ (k_0, k_0' = \text{const})$$

Ebenso suchen Henderson und Hassé⁽¹³¹⁾ (1922) die Résalsche Gleichung zu verbessern durch den Ansatz

$$p \cdot J + k_1 \cdot \mu \cdot \frac{v^2}{2} + k_2 \cdot \left(\mu \cdot \frac{v^3}{2}\right)^2 = f \cdot L \cdot y \quad \alpha = \frac{1}{s}$$

Bianchi⁽¹¹⁴⁾ (1910) wählt im Verbrennungsgesetz (256) k = 1 und erhält eine integrierbare Beziehung zwischen J und e. Ähnlich geht Regii⁽¹³²⁾ (1917/19) vor; jedoch nimmt er die Verbrennungsgleichung $\dot{y} = A \cdot p \cdot \sqrt{1 - k \cdot y}$. Zu erwähnen sind noch die Lösungen von Moisson⁽¹¹⁵⁾ (1887) und Sugot⁽¹³³⁾ (1913), die beide der Lösung von Charbonnier (s. o.) ähneln. Zum Schluß sind noch drei wichtige Lösungsverfahren zu nennen, die von Mache⁽¹¹⁶⁾ (1916/18), H. Lorenz⁽¹³⁴⁾ (1917) und Nowakowski⁽¹³⁵⁾ (1917) stammen; sie alle gehen vom Verbrennungsgesetz (256) aus und berücksichtigen die geometrische Form der einzelnen Pulverkörner. In neuester Zeit sind von Langweiler⁽¹²³⁾ (128) geschlossene mathematische Ausdrücke für innenballistische Größen, insbesondere für den maximalen Gasdruck und die Mündungsgeschwindigkeit des Geschosses entwickelt und experimentell geprüft worden.

Hinzuweisen ist zum Schluß endlich noch auf die zusammenfassenden Arbeiten von Bollé⁽¹⁰⁸⁾, Desmazières⁽¹³⁶⁾ und Cranz⁽¹¹⁰⁾, sowie auf die Behandlung des ballistischen Problems von Lagrange in der inneren Ballistik durch Platrier⁽¹³⁷⁾ und Love-Pidduk⁽¹³⁸⁾ (Bewegung der Pulverladung und Druckverteilung im Rohr während der Geschoßbewegung).

§ 42. Rein empirische Lösungen des Hauptproblems der inneren Ballistik. Vorschlag von Heydenreich

Die vorstehend geschilderten Lösungsverfahren bemühen sich, aus den physikalischen und chemischen Eigenschaften des Pulvers und aus den Gewichten und Maßen der Waffe, der Munition und des Pulvers die innenballistischen Elemente zu ermitteln. Bei den nunmehr zu besprechenden Methoden müssen der Messung zugängliche innenballistische Elemente bereits bekannt sein. Das sind im allgemeinen der maximale Gasdruck p_{\max} , der mit Meßei [§ 32 b] bestimmt wird, und die Mündungsgeschwindigkeit v_0 , die außenballistisch Anfangsgeschwindigkeit genannt wurde und durch Oszillograph oder Boulengé-Gerät gemessen wird [§ 32 b]. Man kann dann irgendeine Funktion

(277)
$$p = f(x, a, b)$$
 [z. B. $p = \frac{a \cdot x}{b + x^2}$ (Vallier)

willkürlich annehmen, die mit den Konstanten a und b den charakteristischen Gasdruckverlauf (Abb. 36) wiedergibt. Mit Hilfe der Newtonschen Bewegungsgleichung $\mu \cdot \ddot{x} = p \cdot q$ können aus (277) leicht die Durchlaufzeit t und die Geschoßgeschwindigkeit vbestimmt werden, so daß a und b durch die gemessenen Größen p_{\max} und v_0 festgelegt werden. In dieser Weise verfahren Vallier^(139/140), Zedlitz⁽¹⁴¹⁾, Leduc⁽¹⁴²⁾ u. a.⁽¹⁴³⁾.

Heydenreich⁽²⁴⁾ stellte empirisch fest, daß die innenballisti-

§ 42. Rein empirische Lösungen des Hauptproblems. Vorschlag 263

schen Elemente im wesentlichen Funktionen des sogenannten Druckverhältnisses

(278)
$$\eta = \frac{p_m}{p_{\max}}$$

sind. Hierin ist p_{\max} der Maximalgasdruck, während p_m den "mittleren Gasdruck" bedeutet, d. h. jenen angenommenen gleichbleibenden Gasdruck, der das Geschoß oder genauer die oben definierte Masse μ so beschleunigt, daß die gemessene Mündungsgeschwindigkeit erreicht wird. Somit ist

(279)
$$p_m \cdot q \cdot l = \frac{\mu}{2} \cdot v_0^2$$
, d. h. $p_m \approx \frac{G_g + 0.5 \cdot L}{2g \cdot l \cdot q} \cdot v_0^2$
($l = \text{Rohrlänge}$).

An der Stelle des höchsten Gasdrucks p_{\max} seien x_{\max} und t_{\max} der Weg des Geschosses bzw. die Laufzeit, vom Beginn der Pulverentzündung an gerechnet. Ferner seien an einer beliebigen Stelle die innenballistischen Elemente mit x (Weg), p (Gasdruck), v (Geschwindigkeit) und t (Zeit) bezeichnet, an der Mündung speziell mit l, p_0 , v_0 bzw. t_0 . Heydenreich definiert dann die Beziehungen

(280) Beliebiger Punkt im Rohr: $x_{\max} = x \cdot \Sigma(\eta); \quad p = p_m \cdot \Pi(\eta);$ $v_{\max} = v \cdot \Phi(\eta); \quad t = \frac{2x}{v} \cdot T(\eta).$ Rohrmündung: $x_{\max} = l \cdot \Sigma(\eta_0); \quad p_0 = p_m \cdot \Pi(\eta_0);$ $v_{\max} = v_0 \cdot \Phi(\eta_0); \quad t_0 = \frac{2l}{v_0} \cdot T(\eta_0).$

Die Funktionen Σ , Π , Φ , und T sind von Heydenreich auf Grund einer großen Anzahl von Versuchen mit Geschützen verschiedenster Kaliber und Geschosse, sowie vieler Pulverarten numerisch wiedergegeben. Die folgende Tabelle zeigt einen Auszug.

2(1)	Π(η)	$arPsi_{}(\eta)$	$T(\eta)$
0.0104	0,200	0.288	0.646
0,0262	0,274	0.322	0.744
0.0471	0.338	0.352	0.842
0.0740	0.400	0.383	0.946
0,1090	0.465	0.416	1.056
0.1160	0.541	0.457	1,180
0.1231	0.635	0.511	1.322
0.1360	0.779	0.592	1.507
	0,0104 0,0262 0,0471 0,0740 0,1090 0,1160 0,1231 0,1360	$\begin{array}{c ccccc} 0,0104 & 0,200 \\ 0,0262 & 0,274 \\ 0,0471 & 0,338 \\ 0,0740 & 0,400 \\ 0,1090 & 0,465 \\ 0,1160 & 0,541 \\ 0,1231 & 0,635 \\ 0,1360 & 0,779 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

264 Kap. IV. Zusammenfassung der innenballistischen Formeln

Beispiel. Aus einer Kanone mit 7,5 cm Kaliber und einem 2 m langem Rohr, einem Geschoß von 6 kg, sowie einer Ladung von 2,0 kg soll eine Mündungsgeschwindigkeit von 500 m/s und ein Höchstgasdruck von 3229 kg/cm^2 erreicht werden.

Zunächst ist nach (279) $p_m = 1453 \text{ kg/cm}^2$, somit $\eta = \frac{1453}{3229} = 0,45$. Ferner wird an der Stelle des höchsten Gasdrucks: $x_{\max} = 0,18 \text{ m};$ $v_{\max} = 200 \text{ m/s}$ und an der Rohrmündung $p_0 = 628 \text{ kg/cm}^2$ und $t_0 = 0,0067 \text{ s}$. Nunmehr können die Elemente auch an einer beliebigen Stelle des Rohres bestimmt werden. Für x = 1,5 m wird: $\Sigma(\eta) = 0,122;$ $\eta = 0,635; p_m = p_{\max} \cdot \eta = 2050 \text{ kg/cm}^2; p = 1177 \text{ kg/cm}^2; v = 421 \text{ m/s};$ t = 0,0062 s.

Kap. IV. Zusammenfassung der innenballistischen Formeln

1. Für die Verbrennung eines Pulvers in einem geschlossenen Volumen gilt die Abelsche Gleichung

$$p = f \cdot \frac{\Delta}{1 - \Delta \cdot a}$$

f (Pulverkraft) und α (Kovolumen) sind charakteristische Pulverkonstanten.

2. Die Energiebilanz eines Pulvers, welches beim Schuß das Geschoß in Bewegung setzt, führt zu der Résalschen Hauptgleichung

$$\begin{split} f \cdot L \cdot y &- p \cdot \left[\mathfrak{B}_0 + q \cdot x - a \cdot L \cdot y - \frac{1}{s} \cdot L \cdot (1 - y) \right] \\ &= (\varkappa - 1) \cdot \left(\frac{\mu}{2} \cdot v^2 + P \right). \end{split}$$

Hierin ist \varkappa kleiner als der theoretische Wert $\varkappa = \frac{c_2}{c_v} = 1,405$: μ ist die berichtigte Geschoßmasse, wodurch die Bewegung der Pulvergase, die Rotationsenergie usw. berücksichtigt werden. Lang weiler bestimmt \varkappa aus der kalorischen Energie U zu

$$x=1+\frac{f}{U}.$$

3. Für die Verbrennung eines Pulverkorns nach "parallelen Schichten" gilt das Verbrennungsgesetz von Vieille

$$\dot{e} = \lambda \cdot p^k = \frac{a}{2\tau_0} \cdot \left(\frac{p}{p_0}\right)^k$$
 (e'= Schichtdicke).

Die Verbrennung kann nach einem Gesetz von Charbonnier auch in der Form

$$\dot{y} = A \cdot \varphi(y) \cdot p^k$$

geschrieben werden. Dabei ist y der verbrannte Pulveranteil; A ist eine charakteristische Pulverkonstante. Der Wert von k wird von verschiedenen Autoren verschieden angenommen, im allgemeinen $0.5 \leq k \leq 1$. Zwischen e und y besteht die allgemeine Beziehung

$$y = a_1 \cdot e + \beta_1 \cdot e^2 + \gamma_1 \cdot e^3.$$

4. Die Lösung des Hauptproblems der inneren Ballistik ist die Lösung des Systems:

$$f \cdot L \cdot y - p \cdot \left| \mathfrak{B}_{\mathbf{0}} + q \cdot x - L \cdot y \cdot a - \frac{L}{s} (1 - y) \right| = (\varkappa - 1) \cdot \left(\frac{\mu}{2} \cdot v^2 + P \right)$$

(Energiegleichung);

(I)
$$\dot{e} = \frac{a}{2\tau_0} \cdot \left(\frac{p}{p_0}\right)^k$$
; $y = a_1 \cdot e + \beta_1 \cdot e^2 + \gamma_1 \cdot e^3$ oder
(II) $\dot{y} = A \cdot \varphi(y) \cdot p^k$ (Verbrennungsgleichung);
 $\ddot{x} = \dot{v} = v \cdot \frac{dv}{dx} = \frac{q}{\mu} \cdot p$ (Newtonsche Bewegungsgleichung).

In manchen Integrationsverfahren werden diese Gleichungen noch vereinfacht.

5. Die Lösung von Krupp-Schmitz und eine von Cranz gehen von den Gleichungen unter 4. mit P = 0 und dem Verbrennungsgesetz (II) aus. Es ergibt sich $v = \frac{q}{\mu} \cdot \xi(y)$; mit den Substitutionen

$$J = \mathfrak{B}_0 + q \cdot x - L \cdot y \cdot a - \frac{L}{s} (1 - y);$$

266 Kap. IV. Zusammenfassung der innenballistischen Formeln

$$\psi(y) = f \cdot L \cdot y - \frac{\varkappa - 1}{2} \cdot \frac{q^2}{\mu} \cdot \xi^2(y)$$

folgt für J die lineare Differentialgleichung mit Störungsglied

$$\frac{dJ}{dy} - \frac{1}{\varkappa - 1} \cdot \frac{f \cdot L - \psi'(y)}{\psi(y)} \cdot J = L \cdot \left(\frac{1}{s} - a\right),$$

deren Lösung sofort angebbar ist. — Krupp-Schmitz löst sie durch Iteration, Cranz auf graphische Weise.

6. Die Lösung von Charbonnier hat als Voraussetzungen: P = 0; Verbrennungsgesetz (II); $a = \frac{1}{s}$; $J = \Re_0 + q \cdot x - a \cdot L$. Dann gilt

$$\begin{aligned} v &= \frac{q}{\mu \cdot A} \cdot \zeta(y); \ \ Z_1(y, y_0) = \int \frac{\zeta(y)}{y \cdot \varphi(y)} dy; \ \ r &= \frac{\varkappa - 1}{2} \cdot \frac{\mu}{f \cdot L} \cdot \left(\frac{q}{\mu \cdot A}\right)^2; \\ \ln\left(\frac{\mathfrak{B}_0 + q \cdot x - a \cdot L}{\mathfrak{B}_0 - a \cdot L}\right) &= \frac{2}{1 - \varkappa} \cdot \ln\left[1 - r \cdot Z_1(y, y_0)\right]; \\ p &= \frac{f \cdot L \cdot y}{J} \cdot \left(\frac{J_0}{J}\right)^{\frac{\varkappa - 1}{2}}. \end{aligned}$$

Diese Beziehungen gelten bis zum Abschluß der Verbrennung (y = 1). Hat das Geschoß bis dahin das Rohr noch nicht verlassen, so muß mit den Formeln

$$p \cdot J^{\varkappa} = p_1 \cdot J_1^{\varkappa}; \quad \frac{\mu \cdot v^2}{2} = \frac{\mu \cdot v_1^2}{2} + \frac{p_1 \cdot J_1}{\varkappa - 1} \cdot \left| 1 - \left(\frac{J_1}{J} \right)^{\varkappa - 1} \right|$$

für eine polytropische Zustandsänderung weitergerechnet werden.

7. Gossot und Liouville machen die gleichen Voraussetzungen wie Charbonnier, benutzen aber das Verbrennungsgesetz (I). Der Reihe nach werden folgende Substitutionen vorgenommen:

a)
$$\frac{1}{q} \cdot [\mathfrak{B}_{0} + q \cdot x - a \cdot L] = H \cdot X; \quad H = \frac{p_{0}^{2} \cdot \tau_{0}^{3} \cdot q^{2}}{\mu^{2}};$$

b)
$$e = \frac{a}{2} \cdot z = \frac{a}{2} \cdot \frac{1}{\tau_{0}} \int \left(\frac{p}{p_{0}}\right)^{\frac{2}{3}} \cdot dt; \quad y = \bar{a}z \cdot (1 - \bar{\lambda} \cdot z - \bar{\mu} \cdot z^{2});$$
$$\frac{\bar{\mu}}{\bar{\lambda}^{2}} \approx 0.$$

c)
$$\xi = \overline{\lambda}^{\mathbf{s}} \cdot X \cdot \left(\frac{f \cdot \overline{a} \cdot L}{\overline{\lambda} \cdot \mu}\right)^{\frac{1}{2}}; \quad Y = \overline{\lambda} \cdot z; \quad w = \left(\frac{\overline{\lambda} \cdot \mu}{f \cdot \overline{a} \cdot L}\right) \cdot v^{\mathbf{s}}.$$

Dann entsteht das System von Differentialgleichungen

$$\xi \cdot \frac{dw}{d\xi} + (x-1) \cdot w = Y(1-Y); \quad 4w^{\frac{3}{2}} \cdot \left(\frac{dY}{d\xi}\right)^3 = \left(\frac{dw}{d\xi}\right)^3.$$

Die Lösung dieses Systems ist von den speziellen Bedingungen einer Aufgabe unabhängig. Es kann also empirisch gelöst werden, indem die Ergebnisse mit verschiedensten Pulversorten herangezogen werden. Gossot und Liouville haben (w, ξ, Y) auf Grund vieler Versuche bestimmt und geeignete Tabellen und Formeln angegeben.

8. Heydenreich beobachtete, daß das Druckverhältnis $\eta = \frac{p_m}{p_{max}}$ maßgebend für die innenballistischen Größen ist. Der mittlere Gasdruck p_m wird berechnet aus

$$p_m \approx \frac{G_g + 0.5 \cdot L}{2g \cdot l \cdot q} \cdot v_0^2.$$

Dann gilt für irgendeine Stelle im Rohr

$$x_{\max} = x \cdot \Sigma(\eta); \quad p = p_m \cdot \Pi(\eta); \quad v_{\max} = v \cdot \Phi(\eta); \quad t = \frac{2x}{v} \cdot T(\eta).$$

Der Index (max.) bezeichnet die Stelle des Maximalgasdruckes p_{\max} . Die Funktionen Σ , Π , Φ , T sind von Heydenreich auf Grund vorliegenden Versuchsmaterials bestimmt und in Tabellenform niedergelegt worden. Zur Benutzung muß man 2 innenballistische Größen kennen; meist sind das die der Messung am leichtesten zugängliche Anfangsgeschwindigkeit (Mündungsgeschwindigkeit) v_0 und der Maximalgasdruck p_{\max} .

F. DIE BALLISTIK DES BOMBENWURFS

§ 43. Darlegung des Problems

Die Ballistik des Bombenwurfs unterscheidet sich in mehreren Punkten grundsätzlich von der Artillerieballistik. Beim Bombenwurf befindet sich das als Geschütz anzusehende Flugzeug nicht in Ruhe, sondern führt relativ zum Ziel eine Bewegung aus, die auf die ganze Art des Vorganges beim Bombenwurf und somit auf die zu bestimmenden ballistischen Elemente von starkem Einfluß ist. Andererseits ist die Flughöhe des bombenwerfenden Flugzeuges nicht konstant und schließlich kann die Fluggeschwindigkeit des Flugzeuges, die mit der Anfangsgeschwindigkeit der abgeworfenen Bombe übereinstimmt, in weiten Grenzen kontinuierlich verändert werden, während die Änderung der Anfangsgeschwindigkeit in der Artillerieballistik nur auf wenige Ladungen beschränkt ist. - Alle diese Dinge prägen der Bombenballistik ihre besondere Eigenart auf, so daß wir im folgenden einen kurzen Abriß dieses ballistischen Sonderproblems geben wollen, wobei wir uns allerdings auf den Horizontalflug beschränken.

Die Eigengeschwindigkeit des Flugzeuges sei v_0 , die Windgeschwindigkeit w und die Geschwindigkeit des zu treffenden Zieles v_g (Gegnerfahrt). Dann setzt sich die Relativgeschwindigkeit des Flugzeuges gegenüber dem Ziel vektoriell zusammen nach folgender Beziehung

(281)
$$\vec{v_z} = \vec{v_0} + \vec{w} - \vec{v_g}$$

Hier und im folgenden bezeichnet der über den Skalar gesetzte Pfeil einen Vektor. — Wir denken uns nun mit dem Flugzeug F(Abb. 37) ein Koordinatensystem (ξ , η , ζ) verbunden, dessen ξ -Achse in die Richtung der Eigengeschwindigkeit v_0 zeigt und dessen η -Achse vertikal nach unten gerichtet ist, während ζ senkrecht auf der (ξ , η)-Ebene steht und nach links zeigt. Mit dem Ziel Z sei ein Koordinatensystem (X, Y, Z) verbunden, dessen X-Achse entgegengesetzt der Relativgeschwindigkeit v_z gerichtet ist; Y zeige parallel η nach oben, während Z wiederum senkrecht auf der (X, Y)-Ebene steht und nach links zeigt. — Wird nun die Bombe zur Zeit t = 0 im Punkte O (Abb. 37) ausgelöst, so befindet sie sich zur Zeit t im Punkte P, während das Flugzeug in der gleichen

Abb. 37. Die Elemente des Bombenwurfs

Zeit nach F gelangt ist. Der Vektor \vec{y} des Bahnpunktes P ist im zielverbundenen (X, Y, Z)-System gegeben durch

$$\vec{y}(t) = \vec{v}_z \cdot t + \vec{x}(t) + \vec{y}_0(t).$$

Hierin bedeuten: $\vec{y}(t) = \text{Verbindungsvektor zwischen Ziel } Z$ und Bombe P; $\vec{x}(t) = \text{Verbindungsvektor zwischen Flugzeug } F$ und Bombe P; $\vec{y}_0(t) = \text{Verbindungsvektor zwischen Ziel } Z$ und Abwurfpunkt O der Bombe. Soll zur Zeit t = T die Bombe durch das Ziel gehen, so muß $\vec{y}(T) = 0$ sein, d. h.

(282)
$$\vec{v}_z \cdot T + \vec{x}(T) + \vec{y}_0(T) = 0.$$

Da im allgemeinen die Richtungen von \vec{v}_1 und \vec{v}_0 nicht, übereinstimmen, sondern einen Winkel σ miteinander bilden, gilt für (282) die Komponentenzerlegung

(283)
$$\begin{cases} X(T) = -\xi(T) \cdot \cos \sigma + v_z \cdot T; \\ Y(T) = \eta(T); \\ Z(T) = \xi(T) \cdot \sin \sigma. \end{cases}$$

Hierin bezeichnet man X(T) als Wurfweite X, T als Flugzeit, Y(T) als Wurf- oder Flughöhe H, $\xi(T)$ als Rücktriftstrecke $R, \zeta(T)$ als Seitentriftstrecke S und σ als Seitentriftwinkel. Die Bezeichnung "Rücktrift" erklärt sich aus der Tatsache, daß R die Strecke bezeichnet, um die die Bombenwurfweite kleiner ist als im luftleeren Raum, d. h. also die horizontale Strecke angibt, die die Bombe hinter dem Flugzeug zurückbleibt. — Vom Abwurfpunkt O der Bombe aus gesehen, erscheint das Ziel Z unter dem Winkel φ , der sich also aus der Beziehung

(284)
$$\operatorname{tg} \varphi = \frac{X}{H} = \frac{v_z \cdot T}{H} - \frac{R}{H} \cdot \cos \sigma$$

bestimmt.

In den Zielgeräten werden nun im allgemeinen außer $\frac{v_z}{H}$, das durch Messung bestimmt wird, die von H und v_0 abhängigen Elemente T und $\frac{R}{H}$ so verarbeitet, daß sich der Vorhalte winkel φ automatisch ergibt. Der Bombenschütze stellt also sein Zielgerät auf diesen Vorhaltewinkel φ ein und löst die Bombe in dem Augenblick aus, in dem das Ziel im Fadenkreuz des Zielgeräts erscheint. Zur Erleichterung des Zielvorganges muß das Ziel möglichst ohne Seitentrift, d. h. mit $\sigma = 0$, angeflogen werden. Nur wenn das nicht möglich ist, muß der Kurs um die Seitentriftstrecke S versetzt werden, so daß der Bombenschütze den Zielvorgang in einer geneigten Ebene auszuführen hat, d. h. das Zielgerät um den Winkel

(285)
$$\eta = \operatorname{arc} \operatorname{tg}\left(\frac{R}{H} \cdot \sin \sigma\right)$$

neigen muß. Die hierbei auftretenden Wurffehler sind gering. ---

Wir müssen uns noch kurz mit dem Zielgerät befassen. Es gibt eine ganze Reihe verschiedener Typen, von denen wir nur eines

Abb. 38. Geometrische Verhältnisse beim Zielgerät

seiner Einfachheit wegen auswählen wollen. Bei dem zu besprechenden Gerät wird die scheinbare Zielgeschwindigkeit v_z aus zwei Durchgangsmessungen am Ziel ermittelt. Bei der ersten Durchgangsmessung wird das Ziel A (Abb. 38) unter einem beliebigen Winkel vom Flugzeug aus anvisiert. Die zweite Durchgangsmessung erfolgt in einem Augenblick, wo (Abb. 38) sich das Ziel an einem Ort B befindet und gleichzeitig

$$AB = BD = v_z \cdot t_m$$

wird. Dabei ist der Punkt D so festgelegt, daß CD mit der Rücktriftstrecke R übereinstimmt, während t_m die zwischen den beiden Durchgangsmessungen liegende Zeit bedeutet. Nach Stoppen des zweiten Zieldurchganges wird der Vorhaltewinkel φ erreicht, wenn die Zeit $(t_m - T)$ verflossen ist; dabei ist T die Fallzeit der Bombe. Damit dieses Verfahren angewandt werden kann, muß also $BD > v_z \cdot t_m$ sein; diese Bedingung ist gleichzeitig eine Bedingung für das Mindestmaß des Winkels, unter dem das Ziel bei der ersten Durchgangsmessung angefaßt werden muß.

Das vorstehend geschilderte Zielverfahren heißt in der Praxis das "Verfahren der zurücklaufenden Stoppuhr" und sieht praktisch folgendermaßen aus: Beim ersten Zieldurchgang (Visur OA) wird eine Stoppuhr in Gang gesetzt; beim zweiten Zieldurchgang (Visur OB) wird wieder gestoppt. Die Uhr ist so konstruiert, daß sie nun mit gleicher Geschwindigkeit wieder zurückläuft. Wird vorher vom Nullpunkt der Uhr aus die Fallzeit T eingestellt, so muß die Bombe in dem Augenblick ausgelöst werden, in dem bei der rückläufigen Bewegung der Uhr diese Marke wieder erreicht wird.

§ 44. Die Bestimmung der Bombenflugbahn

Im Vorangehenden wurde auseinandergesetzt, daß für den Bombenschützen der Vorhaltewinkel φ das maßgebende Element beim Bombenwurf ist. Die Formel (284) und die Beschreibung des Zielgeräts haben erwiesen, daß die Berechnung des Winkels φ über die Relativgeschwindigkeit v_z des Flugzeuges gegenüber dem Ziel und über die Flughöhe H, sowie über die von beiden abhängige Flugzeit T und Rücktrift R erfolgen kann, und zwar durch mechanische Zusammensetzung im Zielgerät. Die Bestimmung von v_z wird durch geeignete Handhabung des Zielgeräts ermöglicht, während die Flughöhe durch barometrische Höhenmessung (vgl. § 1b) oder durch Echolotmessungen ermittelt wird. Die Aufgabe des Ballistikers besteht also lediglich in der Ermittlung der Rücktrift R als Funktion der Abwurfgeschwindigkeit und der Flughöhe. Nimmt man nun an, daß Gegnerfahrt v_g und Windgeschwindigkeit w verschwinden, dann wird $v_z = v_0$ und daher

$$R = v_{\mathbf{0}} \cdot T(v_{\mathbf{0}}, H) - X(v_{\mathbf{0}}, H) \quad \text{bzw.} \quad \text{tg} \, \varphi = \frac{v_{\mathbf{0}} \cdot T}{H} - \frac{R}{H} \, .$$

Die Lösung dieser Aufgabe ist aber mit den bereits bekannten Mitteln ohne weiteres möglich; es handelt sich lediglich darum, eine Flugbahn zu bestimmen mit der gegebenen Anfangsgeschwindigkeit v_0 , die mit der Fluggeschwindigkeit des Flugzeugs übereinstimmt und bei den modernen Bombertypen etwa zwischen 50 m/s — 120 m/s liegt. Der Anfangspunkt der zu berechnenden Bahn liegt in der Höhe *H* über dem Erdboden; dabei ist im allgemeinen H < 10 km. Die Rücktrift *R* hat für moderne Bomben Werte, die etwa zwischen 5% der Wurfweite bei kleinen Abwurfhöhen und -geschwindigkeiten und 8% bei größeren Abwurfhöhen und -geschwindigkeiten liegen. —

Nun ist aber in der Bombenballistik noch ein Umstand bemerkenswert, der auf anderen Gebieten der Ballistik weniger stark in Erscheinung tritt. Bekanntlich werden die Bomben aus Horizontal- oder Vertikalmagazinen abgeworfen. Im ersten Falle stimmt die Anfangslage der Bombenlängsachse mit der Anfangstangente der Bombenflugbahn überein; im letzteren Falle jedoch steht die Bombenlängsachse bei der Auslösung senkrecht auf der Anfangstangente. Die Bombe wird also einen Einpendelungsvorgang durchmachen; dieser Vorgang stellt, wie wir gleich sehen werden, eine gedämpfte Schwingung dar. Nach einer bestimmten Zeit wird also die Pendelung so weit abgeklungen sein, daß nunmehr die Bombenlängsachse praktisch genügend genau in der Flugbahntangente liegt. Diese Pendelung bewirkt aber, daß die Bombe der vorbeiströmenden Luft fast in jedem Augenblick eine größere Fläche darbietet, also eine stärkere Verzögerung durch den Luftwiderstand erleidet. Die Folge ist eine größere Rücktrift als bei horizontal aufgehängten Bomben. In der Tat liegt das Verhältnis der Rücktriften bei Vertikal- und Horizontalaufhängung etwa zwischen 2,5 und 1,5 bei kleinen bis mittleren Flughöhen.

Den Pendelungsvorgang wollen wir nun noch ein wenig näher betrachten. Dabei machen wir darauf aufmerksam, daß die folgenden Entwicklungen auch für die bereits erwähnten Flügelgeschosse gelten. — Zunächst müssen wir die an der Bombe angreifenden Luftkräfte definieren. Die Bombe sei einem mit der Geschwindigkeit v strömenden Luftstrom ausgesetzt (Abb. 39). Der Winkel der Bombenlängsachse gegen die Strömungsrichtung der Luft sei

Abb. 39. Die an der Bombe angreifenden Luftkräfte

a. Die Resultierende R der Luftkräfte greift im Punkte B unterhalb des Schwerpunktes S der Bombe an. Die Resultierende R kann in verschiedener Weise in Komponenten zerlegt werden. Das eine Komponentenpaar ist der Widerstand W in Richtung der Luftströmung und die senkrecht darauf stehende Auftriebskraft A. Das zweite häufig benutzte Komponentenpaar ist die in Richtung der Bombenlängsachse ausgeübte Tangentialkraft T und die senkrecht darauf stehende Normalkraft N. - A, W, N, T und Rsind Funktionen der Geschwindigkeit v und des Anstellwinkels a. Eine leichte Rechnung ergibt folgende Zusammenhänge zwischen diesen Komponenten

(286)
$$\begin{cases} W = N \cdot \sin a + T \cdot \cos a; & A = N \cdot \cos a - T \cdot \sin a; \\ R^2 = W^2 + A^2 = T^2 + N^2. \end{cases}$$

Die in B angreifende Normalkraft N bewirkt schließlich noch ein Drehmoment M um den Schwerpunkt S. Bezeichnet man den Abstand BS mit r, so gilt

$$(287) M = r \cdot N.$$

Die Bombe führt eine Drehbewegung um den Schwerpunkt aus; für solche Fälle gilt die dynamische Grundgleichung der Drehbewegung

(288)
$$\Theta \cdot \frac{d^2 \gamma}{dt^2} = -M.$$

Hierin bedeutet Θ das Trägheitsmoment um eine Querachse der Bombe und γ den Winkel gegen die Horizontale; ist also ϑ der Neigungswinkel der Bahntangente, so ist $\gamma = a + \vartheta$. Im Falle der Bombenpendelung ist das Moment M negativ einzusetzen, da es den Anstellwinkel zu verkleinern bestrebt ist. Das Moment M kann durch Windkanalversuche am festgehaltenen Modell bei verschiedenen Anstell-

Abb. 40. Bestimmung des Zusatzmomentes

winkeln experimentell bestimmt werden. Bei der tatsächlichen Bewegung der Bombe erfolgt neben der Längsbewegung im Luftstrom noch eine Drehbewegung um eine Querachse durch den Schwerpunkt; aus diesem Grunde muß das im parallelen Luftstrom des Windkanals gemessene Moment M noch durch ein Zusatzmoment ΔM berichtigt werden. Zur Veranschaulichung dieser Verhältnisse diene die Abb. 40. Ein Körper K drehe sich im Abstande a um die Achse A; gleichzeitig führe das System AK eine geradlinige Bewegung mit der Geschwin-

digkeit v aus. Zu einem Zeitpunkt t, in welchem $A \breve{K}$ mit v den Winkelabildet, ist die Winkelgeschwindigkeit von AK bestimmt durch $\dot{a} = \frac{da}{dt}$, die Umfangsgeschwindigkeit von K also durch $a \cdot \dot{a}$. Diese letztere setzt

sich mit der Translationsgeschwindigkeit v vektoriell zur Resultierenden V zusammen, die mit v den kleinen Winkel Δa bildet. Infolgedessen ist

$$\operatorname{tg} \Delta a = \frac{a \cdot \dot{a} \cdot \cos a}{v + a \cdot \dot{a} \cdot \sin a}$$

Wir nehmen an, daß Δa klein sei und daß $a \cdot \dot{a} \cdot \sin a$ gegenüber v vernachlässigt werden kann. Dann ist

$$\Delta a \approx \frac{a \cdot \dot{a} \cdot \cos a}{v}$$

und

$$\Delta M = M(a + \Delta a) - M(a) \approx \frac{dM}{da} \cdot \Delta a,$$

d. h.

(289)
$$\Delta M \approx \frac{dM}{da} \cdot \frac{a \cdot \cos a}{v} \cdot \dot{a}.$$

Das Gesamtmoment ist also gegeben durch

(290)
$$\tilde{M} = M(a) + \frac{dM}{da} \cdot \frac{a \cdot \cos a}{v} \cdot \dot{a},$$

und die Gleichung für die Pendelung lautet somit wegen (288) und (290):

(291)
$$\Theta \cdot \ddot{\gamma} + \frac{dM}{da} \cdot \frac{r \cdot \cos a}{v} \cdot \dot{a} + M(a) = 0,$$

da bei der Bombe a durch r zu ersetzen ist. Setzen wir schließlich noch

$$M(v, a) = a \cdot \mu(v, a)$$
 und $\gamma = \vartheta + a$,

so gilt

(292)
$$\ddot{a} + \frac{r \cdot \cos a}{\Theta \cdot v} \cdot \left| a \cdot \frac{d \mu}{d a} + \mu \right| \cdot \dot{a} + \frac{\mu(v, a)}{\Theta} \cdot a = - \ddot{\theta}.$$

Diese Differentialgleichung muß gemeinsam mit den Bewegungsgleichungen [z. B. Formel (44)] integriert werden. Man hat dann also ein System von 3 Differentialgleichungen mit der Veränderlichen v, y, a und der unabhängigen Veränderlichen t; auf die Integration gehen wir nicht weiter ein. Dazu ist am besten ein numerisches oder graphisches Verfahren nach der Art der §§ 18/19 geeignet. In der Praxis schreibt man (292) häufig in der vereinfachten Form

(293)
$$\ddot{a} + h(v) \cdot k(a) \cdot \dot{a} + m(v) \cdot w(a) = -\ddot{\vartheta}.$$

Die in dieser Gleichung auftretenden Funktionen werden im allgemeinen durch Versuche im Windkanal und durch photographische Aufnahme der Bombenpendelung mit nachfolgender numerischer Auswertung bestimmt. Zur Diskussion der Gleichung (293) machen wir die einschränkende Annahme, daß die Pendelung nur in einem sehr kurzen Zeitraum betrachtet werde; dann können h(v) und m(v) als annähernd konstant betrachtet werden; das gleiche gilt erfahrungsgemäß für k(a); w(a) kann stückweise durch einen Ausdruck der Form $C \cdot a$ angenähert werden. Schließlich kann noch $\ddot{\vartheta}$ vernachlässigt werden. Damit geht (293) über in

(294)
$$\ddot{a} + 2\varepsilon \cdot \dot{a} + \delta^2 \cdot a = 0,$$

worin 2ε und δ^2 Konstante sind. Das allgemeine Integral von (294) lautet

(295)
$$a = e^{-\varepsilon \cdot t} \cdot [A \cdot \cos(\omega \cdot t) + B \cdot \sin(\omega \cdot t)]; \quad \omega = \sqrt{\delta^2 - \varepsilon^2}.$$

Man erkennt, daß (295) eine gedämpfte Schwingung darstellt, deren Dämpfungsgrad durch ε bestimmt ist. Zur Vereinfachung der Gleichung (295) wählen wir die Anfangsbedingungen so, daß zu Beginn der Bewegung, (t = 0), $a(0) = a_0$ und $\dot{a}(0) = -\varepsilon \cdot a_0$ wird. Dann geht (295) über in

(295a)
$$\frac{a}{a_0} = e^{-\varepsilon \cdot t} \cdot \cos(\omega \cdot t).$$

Hierin nennt man ε das Dämpfungsmaß und ω die Frequenz. Wie schon weiter oben ausgeführt wurde, ist die Größe des auf die Bombe ausgeübten Luftwiderstandes abhängig vom Anstellwinkel der Bombenlängsachse gegen die Bahntangente. Nehmen wir also einen Mittelwert a_m des durch (295a) definierten Anstellwinkels, so ist die Bombenform die günstigste, deren mittlerer Anstellwinkel a_m am kleinsten ausfällt. Der Mittelwert a_m während der beliebigen Zeit T bestimmt sich üblicherweise aus der Beziehung

$$a_m = \sqrt{\frac{1}{T} \cdot \int_0^T a^2 \cdot dt} \, .$$

Der Einfachheit halber wählen wir die Zeit T so, daß $\omega \cdot T$ gleich einem ungerad-ganzzahligen Vielfachen von π wird; dann ergibt sich

(296)
$$\frac{a_m}{a_0} = \frac{1}{2} \cdot \sqrt{\frac{1}{\varepsilon \cdot T} \cdot \left[1 + \frac{1}{\left(\frac{\omega}{\varepsilon}\right)^{\mathbf{s}} + 1}\right] \cdot \left[1 - e^{-2\varepsilon \cdot T}\right]}$$

Der mittlere Anstellwinkel a_m der Bombe ist also für eine feste Zeit T um so kleiner, je größer Dämpfung und Frequenz der Pendelung sind. Ein Vergleich der vereinfachten Differentialgleichung (294) mit der genaueren (292) zeigt aber, daß 2ε und δ^2 im wesentlichen Mittelwerte von $\frac{r}{v} \cdot \frac{dM}{da} \cdot \frac{\cos a}{\Theta}$ bzw. $\frac{\mu(\mathbf{v}, \mathbf{a})}{\Theta} = \frac{M}{\mathbf{a} \cdot \Theta}$ sind. Wegen $M = r \cdot N$ hat also die Bombe den günstigsten Pendelungsverlauf, bei welcher erstens r möglichst groß ist, und zweitens, bei welcher das Drehmoment M um den Schwerpunkt möglichst groß ist. - Ist nun W der auf das Geschoß ausgeübte Luftwiderstand, so gilt in erster Annäherung $N \approx$ $W \cdot \sin a$ und somit $M = r \cdot N \approx W \cdot r \cdot \sin a \sim W \cdot r \cdot a$ bei nicht zu großen Anstellwinkeln. Da W im allgemeinen eine bestimmte Größe nicht überschreiten soll, kann das Moment M und seine Ableitung $\frac{dM}{da}$ nur mit wachsendem r größer werden. Beide Bedingungen eines günstigen Fluges laufen also im wesentlichen auf die Forderung hinaus, daß bei einer gut fliegenden Bombe die Resultierende des Luftwiderstandes möglichst weit hinter dem Schwerpunkt angreifen muß. Zur Erreichung dieser Verhältnisse gestaltet man den Bombenkörper möglichst lang, verlegt die Hauptmasse der Bombe nach dem Kopfende zu und bringt eine Reihe von Leitflächen am Schwanzende der Bombe an.

G. LITERATURANGABEN

I. Äußere Ballistik

Lehrbücher:

- 1. Cranz, Lehrbuch der Ballistik. Bd. 1. Äußere Ballistik. 5. Aufl. Berlin 1925.
- Lehrbuch der Ballistik. Bd. 3. Experimentelle Ballistik. 2. Aufl. Berlin 1927.
- 3. Lehrbuch der Ballistik. Ergänzungsband. Berlin 1936.
- 4. Vahlen, Ballistik. Berlin-Leipzig 1922.
- 5. Mayewski, Traité de balistique exterieure. Paris 1872.
- Mayewski-Klußmann, Über die Lösung der Probleme des direkten und indirekten Schießens. Berlin 1886.
- 7. Sabudski, Äußere Ballistik. St. Petersburg 1895.
- Sabudski-v. Eberhard, Die Wahrscheinlichkeitsrechnung, ihre Anwendung auf das Schießen und auf die Theorie des Einschießens. Stuttgart 1906.
- 9. Bewegung der Langgeschosse. Stuttgart 1907.
- 10. Charbonnier, Traité de balistique extérieure. Paris 1904.
- 11. Balistique extérieure rationelle, 3 Bde. Paris 1907.
- 12. Manuel de balistique extérieure. Paris 1908.
- 13. Balistique extérieure. 2 Bde. Paris 1921.
- 14. Kritzinger, Schuß und Schall bei Wetter und Wind. Leipzig 1918.
- Lorenz, Ballistik. Die mechanischen Grundlagen der Lehre vom Schuß. Berlin-München 1935.
- 16. Hänert, Geschütz und Schuß. 3. Aufl. Berlin 1940.
- 17. Popoff, Das Hauptproblem der äußeren Ballistik. Leipzig 1932.
- Bashforth, Mathematical Treatise on the Motion of Projectiles. London 1873, Supplement 1881.
- 19. Bianchi, Corso teorico pratico di balistica esterna. Turin 1922.
- 20. Didion, Traité de balistique. 2. Aufl. Paris 1860.
- 21. v. Eberhard, Das Wesen der modernen Visiervorrichtungen. Berlin 1908.
- 22. Einiges über die Ballistik großer Schußweiten. Berlin 1924.
- 23. Cavalli, Balistica esterna. Turin 1928.
- Heydenreich, Lehre vom Schuß und die Schußtafeln. 2 Bde.
 Aufl. Berlin 1908.
- 25. Ingalls, Handbook of Problems in Exterior Ballistics. Washington 1931.
- 26. Deutsch-Zimmerle, Waffenlehre. Berlin 1935.
- 27. Cranz-v. Eberhard, Neuzeitliche Entwicklung der Schußwaffen. Berlin 1931.
- 28. Siacci, Balistique exterieure (frz. Übersetzung). Paris 1892.
- 29. Jakob, Calcul mecanique. Paris 1911.

- 30. Schmidt, Praktische Ballistik für den Artilleristen. Berlin 1940.
- 31. Stange, Das Problem der Flugbahnberechnung. Berlin 1940.
- Gey-Teichmann, Einführung in die Lehre vom Schuß (Ballistik).
 Aufl. Leipzig 1939,
- Schulz, Formelsammlung zur praktischen Mathematik. Berlin 1937. Sammlung Göschen Nr. 1110.
- Runge-König, Vorlesungen über numerisches Rechnen. Berlin 1924.

Mathematische Praxis und Tabellen (Auswahl):

- 35. Otto, J.C.F., Tafeln für den Bombenwurf. Berlin 1842.
- 36. Hilfsmittel für ballistische Rechnungen. Berlin 1859.
- Exterior Ballistic Tables, based on numerial Integration. Bd. I. Washington 1924.
- 38. Hayashi, Fünfstellige Tafeln der Kreis- u. Hyperbelfunktionen. Berlin 1938. (Tabellenwerk für numerische Berechnungen.)
- 39. Fasella, Tavole balistiche secondarie. Genua 1901.
- Cranz, Lehrbuch der Ballistik, 4. Bd., Zahlentafeln. 2. Aufl. Berlin 1918.

Einzelaufsätze:

- 41. v. Eberhard, Art. Mon. Hefte 1912, Nr. 69, S. 196 (Luftwiderstandsmessungen).
- Cranz-Becker, Art. Mon. Hefte 1912, Nr. 69, S. 189 (Luftwiderstandsmessungen am S-Geschoß).
- 43. Siacci, Riv. art. e gen., 1896, Bd. 1, S. 5, 195, 341 (Widerstandsgesetz).
- 44. Šabudski, Petersburg. Art. Journ. 1894, Nr. 4, S. 299 (Zonengesetz).
- 45. St. Robert, Mem. scient. Bd. I. Paris 1872 (Luftgewicht).
- 46. Everling, Art. Mon. Hefte 1918, Nr. 135, S. 72 (Luftgewichtsfunktion).
- 47. Rothe, Wehrt. Mon. Hefte 1935, S. 201 (Ball. Widerstandsgrad).
- Mach, Wiener Berichte 1878, Nr. 77; 1878, Nr. 78; 1887, Nr. 95; 1888, Nr. 97; 1889, Nr. 98; 1892, Nr. 101. (Einfluß der Temperatur auf den Luftwiderstand).
- 49. Darrieus, Mem. de l'Art. Franç., 1922, Bd. I, H. 2, S. 241 (Einfluß der Temperatur).
- Prandtl, in Handwörterbuch d. Nat. Wiss. 1913, Bd. 4, Aufsatz ,,Gasbewegung" (Einfluß der Lufttemperatur; Theoret. Widerstandsgesetz).
- 51. Lamothe, Mém. de l'Art. Franç. 1923, Bd. 2, H. 2, S. 347 (Theoret. Luftwiderstandsgesetz).
- 52. Falkenhagen, Art. Mon. Hefte 1924, Nr. 205/6 (Num. Berechnungen zum theor. Widerstandsgesetz von Lorenz).
- 52a. Ferrari, Aeronautica 1936/37 und Atti di Torino 1937, Bd. 72, Nr. 1, S. 140. (Theoret. Widerstandsbestimmung).
- 53. Magnus, Berliner Berichte, 1852, S. 1-24 (Magnuseffekt).
- 54. Ann. Phys. Chem. 1853, Nr. 88, S. 1 (Magnuseffekt).

- 55. Cranz-Rothe, Art. Mon. Hefte 1917, Nr. 125/26, S. 197 (Diff.-Gl. d. Bewegung).
- 56. de Jong, Militaire Spectator, 1924 (Holland), (Lineares Widerstandsgesetz).
- 57. Charbonnier, Mem. de l'Art. Franc. 1923, Bd. II, S. 421 (Allg. Flugbahneigenschaften bei veränderlichem Luftgewicht).
- 58. Rothe, Unt. Bl. f. Math. u. Nat., 1937, 43. Jahrg., S. 244 (Parabel als ball. Kurve).
- 59. Schmidt, Wehrt. Mon. Hefte, 1938, Aprilheft, S. 159 (Parabel als ball. Kurve).
- 60. Bucerius, Neubegründung der äußeren Ballistik, Astronom, Nachrichten, Bd. 270, H. 2, 1940 (Lösung des außenball, Problems auf der Grundlage der Integralgleichungen).
- 61. St. Robert, Mém. scient., 1872, Bd. I, S. 313 (Ball. Ähnlichkeit).
- 62. Röggla, Mitt. über Geg. des Art. u. Gen. Wesens, 1908, S. 224 (Ähnlichkeit).
- 63. Langevin, Mém. de l'Art. Franc. 1922, Bd. I, S. 253 (Ähnlichkeitsgesetze).
- 64. Lohmann, Auswerteformeln u. Fehleruntersuchungen der ball. Raumbildmessung (1940, unveröffentl.).
- 65. Salih, Wehrtechn. Monatshefte, Juli 1935, 1. Sonderheft (Prüfung der wichtigsten Methoden der äußeren Ballistik).
- 66. Bernoulli, Ges. Werke, Bd. II, S. 394 od. Acta erud., Leipzig 1719, S. 216 (Quadratur der Bewegungsgleichungen).
- 67. d'Alembert, Traité de l'équilibre et du mouvement des fluides, Paris 1744, S. 359 (Quadratur des Hauptproblems).
- 68. Legendre, Dissertation. Abgedruckt von Jakobi, Journ. f. Math., 1842, Nr. 24, S. 25 (Integration der außenball. Diff. Glchg.).
- 69. Siacci, Compt. Rend. 1901. Nr. 132. S. 1175 u. Nr. 133. S. 381 (Quadratur d. ball. Diff. Glchg.).
- 70. Ouivet, Compt. Rend. 1910, Nr. 150, S. 1229 (Quadratur d. außenball. Probl.).
- 71. Drach, Ann. de l'École Norm. Sup., 1920, Nr. 37 (Allg. ball. Integrationstheorie).
- 72. Euler, Berl. Berichte 1753, S. 348 (Quadrat. Luftwiderstand).
- 73. Greenhill, Wollw. Roy. Art. Inst. Proceed. 1881, Nr. 11, S. 113 und S. 589 und 1882, Nr. 12, S. 17 (Ellipt, Integrale in der äuß. Ballistik).
- 74. Austerlitz, Wiener Berichte 1882, Nr. 84, S. 794 (Ellipt. Integrale).
- 75. Stefano, Mem. de l'Art. Franç. 1924, Bd. III, S. 1187 (Hauptproblem mit veränderl. Luftgewicht. Quadratur).
- 76. Cavalli, Mem. de l'Art. Franc. 1923. Bd. II. S. 421 (Neue Hauptgleichung). 77. Siacci, Riv. art. e gen. 1896, I, S. 341 u. 1897, IV, S. 5 (Außenball.
- Näherungslösung).
- 78. Vallier, Rev. d'Art. 1888, Nr. 29, S. 11 (Außenball. Näherungslösung).
- 79. Athen, Zs. f. ang. Math. u. Mech. 1939, H. 6 (prakt. Verwendung von Parameterentwicklungen).

Zur Theorie von Popoff vgl. ferner:

- 79a. Weißmann, Dissertation, Würzburg 1930 (Schwenkverfahren von Popoff).
- 79b. Eggers, Reichsamt für Wetterdienst, Wiss. Abhandl., Bd. V, Nr. 11, Berlin 1939 (Teilbogenverfahren mit Benutzung der Parameterentwicklungen von Popoff).
- 79c. Sauer, Zeitschr. f. ang. Math. u. Mech. 1940, H. 5 (Verallgemeinerung der Interpolation bei Flugbahnscharen durch Anwendung von Affintransformationen).
- 80. Stange, Zs. f. ang. Math. u. Mech. 1940, H. 6 (Ergänzungen zum Athenschen Verfahren).
- 81. Athen, Luftfahrtforschung 1940, Bd. 17, H. 7, S. 216 (Anwendung der Parameterentwicklungen auf Bombenabwurf).
- 82. v. Eberhard, in Cranz, Erg.-Bd. (Nr. 3) (Teilbogenverfahren).
- Vahlen, Art. Mon. Hefte 1918, H. 136/37, S. 145 (Graph. Verfahren).
- 84. Brauer, Anleitung zur graphischen Ermittlung der Flugbahn eines Geschosses. Karlsruhe 1918.
- 85. Veithen, Art. Mon. Hefte 1919, Nr. 147, S. 98 (Graph. Integration).
- 86. Perrin, Mém. de l'Art. Franç., Bd. I, Heft 2 (Ball. Integraph).
- 87. Pascal, I miei integrafi per equazione differenziali. Neapel 1914 (Mech. Integration).
- 88. Filloux, Rev. d'Art. 1908, 72, Nr. 6, S. 345 (Ball. Integraph).
- 89. Füsgen, Dissertation T. H. Aachen 1937 (Flugbahnrechengerät).
- 90. Kummer, Berl. akadem. Abhandlg., 1875, S. 1 u. 1876, S. I (Angriffspunkt des Luftwiderstandes).
- 91. Grammel, Der Kreisel. Braunschweig 1920 (Anwendg. auf Ball.).
- Popoff, Mem. de l'Art. Franç. 1937, Nr. 60 (Pendelbewegung der Geschosse).
- 93. Cranz-Schmundt, Zs. f. angew. Math. u. Mech. 1924, S. 449 (Drallabweichungen).
- Gallop-Fowler-Lock-Richmond, Mém. de l'Art. Franç. 1922, Bd. I, S. 379 u. S. 727 (Experimente zur Pendelbewegung der Geschosse).
- 95. Klein-Sommerfeld, Theorie des Kreisels. Leipzig 1910.
- Noether (Sommerfeld), Art. Mon. Hefte 1919, Nr. 149/50, S. 170 (Geschoß als Kreisel).
- 96a. Schunck, Wehrt. Mon. H. 1940, H. 8-12 (Frage des zweckmäßigsten Enddralls).
- Stübler, Sitzgs.Ber. d. Berl. math. Ges. Jahrg. 1917, 1919, S. 51/62 (Flugbahnstörungen).
- 98. v. Eberhard, in Cranz, Erg.-Bd. (Nr. 3) (Gebrauch der Stüblerschen Formeln).
- Schwarzschild, Sitz.Ber. der Preuß. Akad. d. Wiss., 1920, I, S. 37 (Flugbahnstörung durch Wind und Luftdichteänderung).
- 100. Stanke, Wehrt. Mon. Hefte 1938/39 (Allg. ball. Störungstheorie).
- 101. Veithen, Art. Mon. Hefte 1918, Nr. 136/37, S. 101 (Ball. Störungstheorie).
- 102. Vallier, Rev. d'Art. 1877, Nr. 9, S. 222 (Ausreißerregel).

- 103. Czuber, Jahresber. d. dtsch. Math. Ver. 1899, Nr. 7, H. 7, S. 212 (Zusammenfassg. von Ausreißerregeln).
- 104. Rothe, Art. Mon. Hefte 1916, Nr. 110, S. 65, Nr. 111, S. 125 (Treffwahrscheinlichkeit für beliebige Flächen).
- 105. Scheffers, Berl. Akad.Ber., Phys.-Math. Kl. 1915, Nr. 42, S. 733 (Treffwahrscheinlichkeit f. belieb. Flächen).

II. Innere Ballistik

Lehrbücher:

- 106. Résal, Recherches sur le mouvement des projectiles dans les armes à feu. Paris 1864.
- 107. Piobert, Traité d'artillerie théorique et pratique. Paris 1831/47/ 59/60.
- 108. Bollé, Innere Ballistik, im "Handbuch der phys. u. techn. Mechanik" (Auerbach u. Hort), Bd. 2. Leipzig 1930.
- 109. Charbonnier, Balistique intérieure. Paris 1908.
- 110. Cranz, Lehrbuch der Ballistik, Bd. 2, Innere Ballistik. Berlin 1926.
- 111. Schweikert, Innere Ballistik. Leipzig 1923.
- 112. Gossot-Liouville, Balistique intérieure. Paris 1922.
- 113. Ingalls, Interior Ballistics. 3. Aufl. New York 1912.
- 114. Bianchi, Nozioni fondamentali di balistica interna. Turin 1910.
- 115. Moisson, Pyrodynamique, théorie des explosions dans les armes et les torpilles. Paris 1887.
- Mache, Über die Physik der Verbrennungserscheinungen. Leipzig 1918.
- 117. Kaiser, Konstruktion der gezogenen Geschützrohre. Wien 1892 und 1900.
- 118. Nobel-Abel, Researches on explosives. London 1874.
- Sarrau, Recherches sur les effets de la poudre dans les armes. Paris 1876/77/78.
- 120. v. Scheve, Drallgesetze. Berlin 1892.
- 121. Sébert-Hugoniot, Étude des effets de la poudre. Paris 1882.

Einzelaufsätze:

- 122. Nobel-Abel, Compt. Rend. 1874, Nr. 79, S. 204 (Abelsche Gleichung).
- Langweiler, Zs. f. d. ges. Schieß- u. Sprengstoffwesen. Okt./Dez. 1938 (Math. Untersuchung).
- 124. Vieille, Mém. des poudres et salpètres 1893, Nr. 6, S. 256 (Pulververbrennung).
- 125. Lagrange, Ges. Werke 1793, Bd. 7, S. 603 (Verbrennung, Druck).
- 126. Schmitz, Art. Mon. Hefte 1913, S. 489/91 (Prüfung der Abelschen Gleichung).
- 127. Wolff, Kriegstechn. Zs. 1903, Heft 1 (Abelsche Gleichung).
- 128. Langweiler, Zs. f. d. ges. Schieß- u. Sprengstoffwesen, März 1937 (Energieglchg.).

- 129. Sarrau, Mém. des poudres et salpètres 1882, 1, S. 21 u. 1892, S. 79 (Math. Ausdrücke für innenball. Größen).
- 130. Hadcock, Proc. Roy. Soc. 1917 u. Mém. de l'Art. Franç. 1924, Bd. III, H. 4, S. 1034 (Integration der innenball. Diff.-Glchg.).
- 131. Henderson-Hassé, Proc. Roy. Soc., Mai 1922 u. Mém. de l'Art. Franç. 1922, Bd. I, H. 4, S. 1079 (Integration d. innenball. Hauptglchg.).
- 132. Řegií, Riv. art. e gen. 1917, Bd. 3; 1918, Bd. 2; 1919, Bd. 3 (Integration der innenball. Hauptglchg.).
- 133. Sugot, Mém. de l'Art. Navale 1913, Ser. 3, Bd. 7, Nr. 20, S. 65 u. Nr. 21, S. 241 (Prüfung u. Veränderg. der Methode v. Charbonnier).
- 134. Lorenz, Art. Mon. Hefte 1917, Nr. 129, S. 69 (Integration der innenball. Diff.-Glchg.).
- 135. Nowakowski, Mitt. üb. Gegenstände d. Art. u. Gen. Wesens 1917, H. 8 u. 9 (Integration d. innenball. Hauptproblems).
- 136. Desmazières, Mém. de l'Art. Franç. 1924, Bd. III, H. 4 (Zusammenfassung der innenball. Integrationsmethoden).
- 137. Platrier, Mém. de l'Art. Franç. 1936, Bd. II (Problem v. Lagrange in der Innenballistik).
- 138. Love-Pidduk, Mem. de l'Art. Franç. 1924, Bd. III (Problem v. Lagrange in der Innenballistik).
- Vallier, Compt. Rend. 1899, Nr. 128/129; 1901, Nr. 133; 1902, Nr. 135 (Empirische Lösung des innenball. Problems).
- 140. Mém. des poudres et salpètres 1902, Nr. 11, S. 129 (dto.).
- 141. Zedlitz, Kriegstechn. Zs. 1901, Nr. 4, S. 525 und Art. Mon. Hefte 1910, Nr. 45, S. 157 (Empirisches Lösungsverfahren).
- 142. Bollé, Kriegstechn. Zs. 1914, Nr. 17, S. 64/103/158 (Methode Leduc).
- 143. Zs. f. d. ges. Schieß- u. Sprengstoffwes. 1909, Nr. 4, S. 101 u. S. 128 (Empirisches Lösungsverfahren).

III. Allgemeines

- 144. Kritzinger-Stuhlmann, Artillerie und Ballistik in Stichworten. Berlin 1939.
- 145. Waninger-Füsgen, Das Richten der Geschütze.
- 146. Inspektion der Marineartillerie, Leitfaden für den Artillerieunterricht in der Kriegsmarine, Teil I--III. Berlin 1931/33.

H. VERZEICHNIS DER FÜR DIE BALLISTIK WICHTIGSTEN MATHEMATISCHEN SÄTZE

I. Komplexe Zahlen

Eine komplexe Zahl $z = a + i \cdot b$ setzt sich aus dem Realteil a und dem Imaginärteil $i \cdot b$ $(i = \sqrt[j]{-1})$ zusammen. Ihr absoluter Betrag ist $|z| = r = \sqrt[j]{a^2 + b^2}$; ihre Amplitude φ ist gegeben durch $\varphi = \operatorname{arc} \operatorname{tg} \frac{b}{a}$. Es gilt

$$z = a + i \cdot b = r \cdot (\cos \varphi + i \cdot \sin \varphi) = r \cdot e^{i \cdot \varphi}.$$

a) Addition:

$$z_1 \pm z_2 = (a_1 \pm a_2) + i \cdot (b_1 \pm b_2);$$

b) Multiplikation:

$$z_1 \cdot z_2 = r_1 \cdot r_2 \cdot e^{i \cdot (\varphi_1 + \varphi_2)} = r_1 \cdot r_2 \cdot [\cos(\varphi_1 + \varphi_2) + i \cdot \sin(\varphi_1 + \varphi_2)]$$

= $(a_1 \cdot a_2 - b_1 \cdot b_2) + i \cdot (a_1 \cdot b_2 + a_2 \cdot b_1);$

c) Potenzieren:

 $z^{n} = r^{n} \cdot e^{i \cdot n \cdot \varphi} = r^{n} \cdot [\cos n \cdot \varphi + i \cdot \sin n \cdot \varphi]; \quad (\text{Satz von Moivre}).$

II. Trigonometrische Funktionen

a) Additionstheoreme:

$$\sin(a \pm \beta) = \sin a \cdot \cos \beta \pm \cos a \cdot \sin \beta;$$

$$\cos(a \pm \beta) = \cos a \cdot \cos \beta + \sin a \cdot \sin \beta;$$

b) Doppeltes Argument:

$$\sin 2a = 2\sin a \cdot \cos a; \quad \cos 2a = \cos^2 a - \sin^2 a;$$
$$tg a = \sqrt{\frac{1 - \cos 2a}{1 + \cos 2a}} = \frac{\sin 2a}{1 + \cos 2a} - \frac{1 - \cos 2a}{\sin 2a}.$$

c) Summen und Differenzen:

$$\sin a + \cos a = \sqrt{2} \cdot \sin\left(\frac{\pi}{4} + a\right); \quad \cos a - \sin a = \sqrt{2} \cdot \cos\left(\frac{\pi}{4} + a\right);$$
$$\operatorname{ctg} a + \operatorname{tg} a = \frac{2}{\sin 2a}; \quad \operatorname{ctg} a - \operatorname{tg} a = 2\operatorname{ctg} 2a.$$

d) Ebenes Dreieck:

$$\sin \alpha : \sin \beta : \sin \gamma = a : b : c$$
 (Sinussatz);

$$a^{2} = b^{2} + c^{2} - 2b \cdot c \cdot \cos a = (b+c)^{2} - 4b \cdot c \cdot \cos^{2} \frac{a}{2}$$

$$= (b-c)^{2} + 4b \cdot c \cdot \sin^{2} \frac{a}{2}.$$
(Cosinussatz)

e) Sphärisches Dreieck:

 $\sin a : \sin b : \sin c = \sin a : \sin \beta : \sin \gamma$ (Sinussatz);

 $\cos a = \cos b \cdot \cos c + \sin b \cdot \sin c \cdot \cos a$ (Cosinussatz für die Seiten); $\cos a = -\cos \beta \cdot \cos \gamma + \sin \beta \cdot \sin \gamma \cdot \cos a$ (Cosinussatz für die Winkel).

Für das rechtwinklige sphärische Dreieck $(\gamma = 90^{\circ})$ gilt die Nepersche Regel: Der cos irgendeines der im nebenstehenden Schema angeschriebenen Stücke ist gleich dem Produkt der sin der getrennten und gleich dem Produkt der etg der anliegenden Stücke; z. B.

 $\cos a = \sin \beta \cdot \cos a; \quad \sin a = \operatorname{tg} b \cdot \operatorname{ctg} \beta.$

III. Hyperbolische Funktionen

a) Definition:

$$\begin{aligned} & \mathbb{C} \mathfrak{o}[z = \frac{e^z + e^{-z}}{2}; \quad \mathbb{S} \operatorname{in} z = \frac{e^z - e^{-z}}{2}; \quad \mathbb{T} \operatorname{ang} z = \frac{\mathbb{S} \operatorname{in} z}{\mathbb{C} \mathfrak{o}[z]}; \\ & \mathbb{C} \mathfrak{otg} z = \frac{\mathbb{C} \mathfrak{o}[z}{\mathbb{S} \operatorname{in} z}; \quad \mathbb{C} \mathfrak{o}[^2 z - \mathbb{S} \operatorname{in}^2 z = 1; \quad \mathbb{T} \operatorname{ang} z \cdot \mathbb{C} \operatorname{otg} \cdot z = 1. \end{aligned}$$

b) Doppeltes Argument:

$$\begin{split} \mathfrak{Co}\left|\frac{z}{2}\right| &= \sqrt{\frac{\mathfrak{Co}\left[z+1\right]}{2}}; \quad \mathfrak{Sin}\frac{z}{2}\right| &= \sqrt{\frac{\mathfrak{Co}\left[z-1\right]}{2}}; \\ \mathfrak{Tang}\frac{z}{2} &= \frac{\mathfrak{Sin}z}{1+\mathfrak{Co}\left[z\right]} &= \frac{\mathfrak{Co}\left[z-1\right]}{\mathfrak{Sin}z}; \end{split}$$

 $\mathfrak{Col}2z = \mathfrak{Col}^2z + \mathfrak{Sin}^2z; \ \mathfrak{Sin}2z = 2\mathfrak{Col}z \cdot \mathfrak{Sin}z; \ \mathfrak{Tang}2z = \frac{2\mathfrak{Tang}z}{1 + \mathfrak{Tang}^2z}$

c) Summen und Differenzen

$$\begin{split} & \mathbb{C}\mathfrak{o}\mathfrak{f}(x\pm y) = \mathbb{C}\mathfrak{o}\mathfrak{f}x \cdot \mathbb{C}\mathfrak{o}\mathfrak{f}y \pm \mathbb{C}\mathfrak{i}\mathfrak{n}x \cdot \mathbb{C}\mathfrak{i}\mathfrak{n}y;\\ & \mathbb{C}\mathfrak{i}\mathfrak{n}(x\pm y) = \mathbb{C}\mathfrak{i}\mathfrak{n}x \cdot \mathbb{C}\mathfrak{o}\mathfrak{f}y \pm \mathbb{C}\mathfrak{o}\mathfrak{f}x \cdot \mathbb{C}\mathfrak{i}\mathfrak{n}y. \end{split}$$

IV. Unbestimmte Ausdrücke (Grenzbetrachtungen)

Zusammenstellungen von 2 Funktionen der Form $\frac{f(x)}{\varphi(x)}$, $f(x) \cdot \varphi(x)$, $f(x) - \varphi(x), \ldots$ können für einen Wert x = a die unbestimmten Werte $\frac{0}{0}, \frac{\infty}{\infty}, 0 \cdot \infty, \infty - \infty, \ldots$ annehmen. Um ihren wahren Wert zu bestimmen, werden sie auf Ausdrücke der Form $\frac{F(x)}{\varphi(x)}$ zurückgeführt; dann gilt $\lim_{x \to a} \frac{F(x)}{\varphi(x)} = \frac{F'(a)}{\varphi'(a)}$, oder wenn letzteres auch noch unbestimmt wird, schließlich

$$\lim_{x \to a} \frac{F(x)}{\Phi(x)} = \frac{F^{(n)}(a)}{\Phi^{(n)}(a)} .$$

V. Die binomische Reihe

Für beliebige n gilt:

$$(1+x)^n = 1 + {n \choose 1} \cdot x + {n \choose 2} \cdot x^2 + \cdots + {n \choose r} \cdot x^r + \cdots$$

Die Gliederzahl wird unendlich für negative und gebrochene n; die Reihe ist absolut konvergent, wenn |x| < 1. Sie ist ferner absolut konvergent für $x = \pm 1$ und n > 0. Sie konvergiert, wenn $x = \pm 1$ und n > -1. Divergenz herrscht für $x = \pm 1$ und $n \leq -1$, sowie für |x| > 1.
VI. Die Taylorsche Reihe

Im abgeschlossenen Intervall (x; x - h) sei f(x) (n + 1)-mal differenzierbar. Dann gilt

$$f(x+h) = f(x) + \frac{h}{1!} \cdot f'(x) + \frac{h^2}{2!} \cdot f''(x) + \dots + \frac{h^n}{n!} \cdot f^{(n)}(x) + \frac{h^{n+1}}{(n+1)!} f^{(n+1)}(x+\vartheta \cdot h), \ (0 < \vartheta < 1).$$

Das letzte Glied ist das sog. Restglied. Strebt dieses gleichmäßig für alle $\vartheta(0 \leq \vartheta \leq 1)$ mit wachsendem *n* gegen Null, so geht obige Formel unter der Voraussetzung, daß f(x) beliebig oft differenzierbar ist, über in die konvergente Taylorreihe mit (im allgemeinen) unendlicher Gliederzahl.

VII. Reihenumkehrung

Es sei
$$y = a_0 + a_1 \cdot (x - x_0) + a_2 \cdot (x - x_0)^2 + \cdots$$
, $(a_1 \neq 0)$.
Man setzt $y - a_0 = \eta$; $a_1 \cdot (x - x_0) = \xi$; $\frac{a_\nu}{a_1^\nu} = a_\nu$ $(\nu \ge 2)$, so daß
 $\eta = \xi + a_2 \cdot \xi^2 + a_3 \cdot \xi^3 + \cdots$

wird. Dann sind die Koeffizienten β_2, β_3, \cdots der Reihenumkehrung

$$\xi = \eta + \beta_2 \cdot \eta^2 + \beta_3 \cdot \eta^3 + \cdots$$

gegeben durch

$$\beta_2 = -a_2; \ \beta_3 = 2a_2^2 - a_3; \ \beta_4 = -5a_2^3 + 5a_2 \cdot a_3 - a_4; \ \cdots$$
 usw.

Man erhält sie durch Koeffizientenvergleich aus der Reihe für η , wenn in diese $\xi = \eta + \beta_2 \cdot \eta^2 + \cdots$ eingesetzt wird.

VIII. Der Satz von Poincaré

In der Gleichung $\frac{dy}{dx} = f(x, y, \lambda)$ sei λ ein Parameter, während $f(x, y, \lambda)$ eine stetige Funktion von x in dem Intervall $(x_0 - a; x_0 + a)$ und eine holomorphe Funktion von y und λ im Gebiet $|y - y_0| \leq b$; $|\lambda - \lambda_0| \leq r$ sei. Dann ist das Integral dieser Gleichung, welches für $x = x_0$ den Wert y_0 annimmt, eine holomorphe Funktion von λ , solange

 $|x - x_0| < A$ bleibt, wo A die kleinere der beiden Größen a und $\frac{b}{M}$ ist. Dabei bedeutet M den Maximalwert von $|f(x, y, \lambda)|$ im genannten Gebiet.

IX. Interpolation, numerische Differentiation und Integration

a) Interpolation: Die Interpolationsstellen a_{ν} seien äquidistant, so daß $x_{\nu+1} - x_{\nu} = h$ und $x_{\nu} = x_0 + \nu \cdot h$. Setzt man $x - x_0 = h \cdot u$ und $f(x) = f(x_0 + h \cdot u) \equiv F(u)$, also

$$\Delta f(x) = f(x+h) - f(x) = \Delta F(u) = F(u+1) - F(u),$$

so gelten die Interpolationsformeln

$$F(u) = F(0) + \frac{u}{1!} \cdot \frac{\varDelta^{1} F_{0,-1} + \varDelta^{1} F_{1,0}}{2} + \frac{u^{2}}{2!} \cdot \varDelta^{2} F_{0}$$

+ $\frac{u \cdot (u^{2} - 1)}{3!} \cdot \frac{\varDelta^{3} F_{0,-1} + \varDelta^{3} F_{1,0}}{2} + \cdots$ (Stirling);

oder

$$F(u) = \frac{F(0) + F(1)}{2} + \frac{u - \frac{1}{2}}{1!} \Delta^{1} F_{1,0} + \frac{u \cdot (u - 1)}{2!} \cdot \frac{\Delta^{2} F_{0} + \Delta^{2} F_{1}}{2}$$
$$+ \frac{u \cdot (u - 1) \cdot (u - \frac{1}{2})}{2} \cdot \Delta^{3} F_{1,0} + \cdots \text{ (Bessel).}$$

(Differenzenschema s. S. 183).

b) Differentiation: Aus der Stirlingschen Interpolationsformel folgt durch Differenzieren

$$F'(0) = \frac{\Delta^{1}F_{0,1} + \Delta^{1}F_{0,-1}}{2} - \frac{1}{6} \frac{\Delta^{3}F_{0,-1} + \Delta^{3}F_{1,0}}{2} + \frac{1}{30}(\Delta^{5}) - \frac{1}{140}(\Delta^{7}) + \cdots;$$

$$F''(0) = \Delta^{2}F_{0} - \frac{1}{12}\Delta^{4}F_{0} + \frac{1}{90}\cdot\Delta^{6}F_{0} - \frac{1}{560}\Delta^{8}F_{0} + \cdots$$

c) Integration: Die Integration der Besselschen Formel liefert

$$\int_{x_{\nu}}^{x_{\nu}+\nu\cdot\hbar} \int_{0}^{1} F(u+\nu) \cdot du =$$

$$h \cdot \left\{ \frac{y_{\nu}+y_{\nu+1}}{2} - \frac{1}{12} \frac{\Delta^{2} y_{\nu} + \Delta^{2} y_{\nu+1}}{2} + \frac{11}{720} \frac{\Delta^{4} y_{\nu} + \Delta^{4} y_{\nu+1}}{2} + \cdots \right\}$$

X. Differentialgleichungen

In der Ballistik treten vorwiegend die folgenden Typen von Differentialgleichungen auf:

a) Lineare Differentialgleichung erster Ordnung mit Störungsglied:

$$y' = \frac{dy}{dx} = y \cdot f_0(x) + f_1(x).$$

Lösung durch Variation der Konstanten in der zugehörigen homogenen Gleichung $y' = y \cdot f_0(x)$. Man erhält

$$y = e^{\int f_0(x) \cdot dx} \cdot \left\{ \int f_1(x) \cdot e^{-\int f_0(x) \cdot dx} \cdot dx + \text{Int. Konst.} \right\}.$$

b) Die Bernoullische Differentialgleichung

$$\frac{dy}{dx} = y \cdot f_0(x) + y^n \cdot f_1(x)$$

geht durch die Transformation u = x, $v = y^{1-n}$ in eine lineare über.

c) Die Riccatische Differentialgleichung

$$y' = f_0(x) \cdot y^2 + 2f_1(x) \cdot y + f_2(x)$$

führt mit der Transformation u = x, $v = y - y_0$ auf eine Bernoullische Differentialgleichung, wenn y_0 eine bekannte partikuläre Lösung ist.

d) Die Differentialgleichung $M(x, y) \cdot dx + N(x, y) \cdot dy = 0$ wird durch Bestimmung des Eulerschen Multiplikators $\mu(x, y)$ gelöst, und zwar so, daß

$$\mu(x, y) \cdot [M(x, y) \cdot dx + N(x, y) \cdot dy] = 0$$

ein vollständiges Integral wird. $\mu(x,\,y)$ muß der partiellen Differentialgleichung

$$\mu \cdot \left| \frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right| = N \cdot \frac{\partial \mu}{\partial x} - M \cdot \frac{\partial \mu}{\partial y}$$

genügen.

e) Die lineare Differentialgleichung 2. Ordnung

$$y'' + 2f_1(x) \cdot y' + f_2(x) \cdot y = \varphi(x)$$

kann auf verschiedene Weise gelöst werden:

a) z sei ein partikuläres Integral der homogenen Gleichung $[\varphi(x) \equiv 0]$. Dann ist $y = v \cdot z$ das allgemeine Integral der inhomogenen Gleichung; dabei ist

$$v = C_1 \cdot \int \frac{dx}{z^2} \cdot e^{-2\int f_1(x) dx}$$
$$+ \int \frac{dx}{z^2} \cdot \left[e^{-2\int f_1(x) dx} \cdot \int z \cdot \varphi(x) \cdot e^{2\int f_1(x) dx} \cdot dx \right] + C_2$$

 β) Ist z_1 ein partikuläres Integral der homogenen Gleichung, so ist

$$z_2 = z_1 \cdot \int \frac{dx}{z_1^2} \cdot e^{-2\int f_1(x) \cdot dx}$$

ein zweites partikuläres Integral und

$$y_z = A \cdot z_1 + B \cdot z_2$$

das allgemeine Integral der homogenen Differentialgleichung. — Das allgemeine Integral der inhomogenen Gleichung setzt sich zusammen aus dem allgemeinen Integral der homogenen und einem partikulären Integral y_1 der inhomogenen Gleichung:

$$y = y_1 + A \cdot z_1 + B \cdot z_2.$$

 γ) Man kann das allgemeine Integral der inhomogenen Gleichung auch durch Variation der Konstanten in der Lösung der homogenen Gleichung bestimmen. Dann ist

$$y = \overline{A} \cdot z_1 + \overline{B} \cdot z_2$$
,

wobei

$$\begin{split} \bar{A} &= c \cdot \int z_2 \cdot \varphi(x) \cdot e^{2 \int f_1(x) \cdot dx} \cdot dx + A; \\ \bar{B} &= -c \cdot \int z_1 \cdot \varphi(x) \cdot e^{2 \int f_1(x) \cdot dx} \cdot dx + B \end{split}$$

ist. Dabei ist c eine passend zu bestimmende Konstante.

 δ) Sonderfälle sind die Differentialgleichungen

$$y^{\prime\prime} = a^2 \cdot y$$
 bzw. $y^{\prime\prime} = -b^2 \cdot y$.

Ihre allgemeinen Lösungen lauten

$$y = A \cdot e^{a \cdot x} + B \cdot e^{-a \cdot x}$$
 bzw. $y = A \cdot \sin(b \cdot x) + B \cdot \cos(b \cdot x)$.

1) Auf Systeme von Differentialgleichungen lassen sich die vorstehenden Sätze sinngemäß anwenden.

290

XI. Bestimmte Integrale

a) Außer der unter IXc beschriebenen Methode zur numerischen Integration kann man für Näherungsberechnungen auch die folgenden einfachen Verfahren verwenden:

a)
$$\int_{a}^{b} f(x) \cdot dx =$$

 $\frac{h}{2} \cdot \{f(a) + 2f(a+h) + 2f(a+2h) + \dots + 2f(b-h) + f(b)\},\$

wo die Anzahl der Glieder in der geschweiften Klammer gleich (n+1)und $h = \frac{b-a}{n}$ ist.

$$\beta) \int_{a}^{b} f(x) \cdot dx = 2h \cdot \{f(a+h) + f(a+3h) + \dots + f(b-3h) + f(b-h)\},\$$

wo die Gliederzahl gleich 2n und $h = \frac{b-a}{2n}$ ist.

$$\gamma \int_{a}^{b} fx \cdot dx = \frac{h}{3} \cdot \{f(a) + 4f(a+h) + 2f(a+2h) + 4f(a+3h) + \dots + 2f(b-2h) + 4f(b-h) + f(b)\},$$

wobei die Gliederzahl (2n + 1) und $h = \frac{b - a}{2n}$ ist. b) Die Gammafunktion $\Gamma(p)$ ist definiert durch das Integral

$$\Gamma(p) = \int_{0}^{\infty} e^{-x} \cdot x^{p-1} \cdot dx; \quad \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}.$$

Für positive ganze Zahlen gilt

$$\Gamma(p) = (p-1)! = 1 \cdot 2 \cdot 3 \cdots (p-1).$$

Ferner ist allgemein

$$\begin{split} &\Gamma(p) = (p-1) \cdot \Gamma(p-1) \quad \text{für} \quad p > 1; \\ &\Gamma(p+1) \cdot \Gamma(1-p) = \frac{p \cdot \pi}{\sin(p \cdot \pi)} \,. \end{split}$$

XII. Mittelwertsätze der Differential- und Integralrechnung

a) Die Funktion f(x) sei im Intervall $a \leq x \leq b$ differenzierbar. Es gilt dann mindestens eine Stelle ξ so, daß $(a < \xi < b)$ und

$$\frac{f(b)-f(a)}{b-a} = f'(\xi)$$

 \mathbf{oder}

b) Die Funktionen f(x) und $\varphi(x)$ seien im Intervall $a \leq x \leq b$ stetig, und $\varphi(x)$ habe überall dasselbe Vorzeichen. Dann gibt es einen Wert ξ so, daß $a \leq \xi \leq b$ und

 $\frac{f(b)-f(a)}{b-a} = f'[a+\vartheta \cdot (b-a)] \quad \text{mit} \quad (0 < \vartheta < 1).$

$$\int_{a}^{b} f(x) \cdot \varphi(x) \cdot dx = f(\xi) \cdot \int_{a}^{b} \varphi(x) \cdot dx.$$

Nimmt $\varphi(x)$ im Intervall mit wachsendem x entweder nie ab oder nie zu (ohne notwendigerweise positiv zu sein), so gibt es ein ξ ($a \leq \xi \leq b$) derart, daß

$$\int_{a}^{b} f(x) \cdot \varphi(x) \cdot dx = \varphi(a) \cdot \int_{a}^{\xi} f(x) \cdot dx + \varphi(b) \cdot \int_{\xi}^{b} f(x) \cdot dx.$$

SACH- UND NAMENVERZEICHNIS

Abel 245, 282 Abelsche Gleichung 245, 264 Abschluß der Verbrennung 256 Abgangsfehlerwinkel 11 Abgangswinkel 44, 53, 69 absoluter Nullpunkt 245 absteigender Flugbahnast 53, 69, 70 Abrundungsradius 22 Abweichung, durchschnittliche 224 -, mittlere, quadratische 224 -, 50 %ige 224 -, wahrscheinliche 224 Abzugsvorrichtung 11 Ahnlichkeitsgesetze 79, 81, 106 Aide Mémoire 142, 173 d'Alembert 98, 104, 280 amerikanisches Rechenverfahren 167 Widerstandsgesetz 31, 159 Ammann 242 Änderungen der ballistischen Elemente 202, 205 anfänglicher Verbrennungsraum 245Anfangsgeschwindigkeit 44, 70, 211, 235 Angelrutenprinzip 51, 55, 152 Anstellwinkel 187, 192, 277 Artillerierechenschieber 241 Asymptote 70, 106 Athen 155, 159, 218, 220, 280, 281 aufsteigender Flugbahnast 53, 69 Ausgleichsfaktor, außenball. 123, 145 -, innenball. 248 Ausreißer 223, 227 Austerlitz 280 Auswerteformeln, photogrammetrische 91 Bahngeschwindigkeit 69, 73 ballistische Hauptgleichung 46, 49 ballistischer Beiwert 21, 107, 208, 212

ballistischer Widerstandsgrad 32 – Wind 216 ballistisches Luftgewicht 216 — Problem 10 Ballistograph 185 Baltasekunden 217 barometrische Höhenformel 25 Bashforth 30, 109, 168, 278 Basis 89 Basissystem 89 Becker 279 Bernoulli 30, 98. 143. 173. 280 Bernoullische Differentialgleichung 289 Besselsche Interpolation 183 Bestimmte Integrale 291 β -Tafeln 125 β -Wert 125, 129, 171 Bewegungsgleichung, außenball. 44, 59, 195 ---, innenball. 250, 265 Bianchi 261, 278, 282 binomische Reihe 286 bocken 11 Bollé 256, 262, 282, 283 Bombe 268 Bombenwurf 268 Boulengé-Gerät 235, 265 Brauer 281 Breitenstreuung 231 Bremskraft 13 Bucerius 184, 280 B. W. E. Tafel 240 Cauchy 138 Cavalli 113, 135, 171, 278, 280 Chapel 33, 128 Chapelsche Gerade 33 Charbonnier 26, 113, 130, 171, 249, 250, 253, 261, 265, 266, 278, 280, 282 Chauvenet 227 Commission de Gâvre 140 Corioliskraft 37, 43, 48, 58, 85

Cranz 9, 23, 54, 177, 184, 186, 193, 201, 218, 225, 249, 251, 253, 262, 265, 278, 279, 280, 281, 282 Czuber 282 Dämpfungsgrad 275 Darrieus 35, 208, 210, 211, 220, 279 Darrieussche Formeln 208, 210, 220 Denjoy 98 Desmazières 262, 283 Deutsch 278 Didion 113, 278 Didion-Bernoullische Lösung 143, 173 Differentialgleichungen 289 Differentialgleichung der Bewegung 43, 48, 173 Dimensionsbetrachtungen 17, 36 Disjunktionsmarke 235 Drach 48, 280 Drall 15, 191 Drehachse 58 Drehimpuls 188 Drehmoment 187, 191, 273 Druckbombe 246 Druckverhältnis 263, 267 durchschnittliche Abweichung 224 — Flughöhe 218 dynamische Grundgleichung 274 v. Eberhard 18, 20, 23, 30, 160, 203, 218, 278, 279 Eggers 159, 281 Endgeschwindigkeit 53, 70, 239 Energiegleichung 247, 265 Enge Gabel 239 Erhöhung 51, 153, 159, 233 Euler 107, 280 Eulersche Gleichung 196 Everling 26, 72, 135, 279 Everlingsche Formel 26, 48, 72, 74, 135, 164 Explosionstemperatur 245 Exterial Ballistic Tables 19, 279 Extremalbahn 76 Falkenhagen 41, 279 Fallwinkel 69, 79 Fasella 127, 279

Fasellatafeln 127, 170 Fehler 124 Fehlergesetz 222 Ferrari 41, 279 Feuerkommando 241 Filloux 185, 281 Flachbahn 128, 154 Flächensatz 189 Flugbahn 44, 213 Flugbahnast, absteig. 53, 69, 70 -, aufsteig. 53, 69 Flugbahnberg 242 Flugbahnbild 241 Flugbahneinhüllende 57 Flugbahngleichung 49, 59, 141 Flugbahnschar 51, 54, 146, 155 Flugwert 81 Flügelmine 14, 15, 34, 272 Flugzeit 44, 52, 55, 78, 159, 239 Folgsamkeit 188 Folgsamkeitsfaktor 191 Formeln des Aide-Mémoire 142,173 Formfaktor 22, 80 Fowler 201, 281 freie Weglänge 35 Führungsband 15, 186 Füsgen 185, 281, 283 Gallop 201, 281 I'-Funktion 224, 291 Garnier 164 Gasdruck 235, 237 Gasdruckverlauf 243 Gaskonstante 24, 146 Gauß 222 Gaußsches Fehlergesetz 222 Gaußsche Verteilung 222 gedämpfte Schwingung 272 Gegnerfahrt 268 Geländewinkel 55 Geschütz 11 Geschwindigkeitsabfall 26 Geschwindigkeitsminimum 70, 87 Gey-Teichmann 279 Gipfel 53 Gipfelpunkt 53, 54, 73, 76 Gipfelwerte 78 gleichwahrscheinlich 221 Gossot 248, 258, 266, 282 Grammel 201, 281

graphische Integration 175, 177 ----Schußtafel 241 Greenhill 280 Grenzgeschwindigkeit 71 Grundgleichung der Raumbildmessung 91 **H**aag 164 Hadcock 261, 283 Hänert 188, 278 Hassé 261, 283 Hauptgleichung von Cavalli 135 Hauptpunkt 94 Hauptsche Formel 53, 217 Hayashi 279 Hélie 140 Henderson 261, 283 Heydenreich 261, 262, 263, 267, 278Hodographengleichung 46, 79, 97, 117, 132, 160 Höhenstreuung 231 Hojel 33, 128 Horizontalflug 268 Horizontalmagazin 272 Hugoniot 282 hyperbolische Funktionen 285 Ingalls 261, 278, 282 innenballistische Hauptgleichung 247innenballistisches Problem 243 Integrabilität, außenball. 97, 113 -, innenball. 251 Integraph 185 Interpolation bei Flugbahnen 156 Interpolationsfehler 157 Interpolationsgleichung 156, 174, 288Iterationsverfahren 182 *i*-Wert 23 Jakob 185, 278 de Jong 76, 112, 117, 280 Justierfehler 94 Kaiser 282 Kaliberfaktor 30 kalorische Energie 248, 265 Kamerasystem 90

Keplergesetze 59 kinetische Gastheorie 35 Kippwinkel 91 Klein 281 Klußmann 278 Kommandotafel 238 komplexe Zahlen 284 Kontrollpunkte 94 Kopfwelle 34 Kovolumen 245, 264 Kreiselwirkung 186, 201 Kritzinger 30, 217, 278, 283 Krümmungsradius 47, 49 Krupp-Schmitz 251, 265 Kruppsches Widerstandsgesetz 20 kubisches Widerstandsgesetz 107, 168Kugelgeschoß 14, 21 Kummer 187, 281 Kupferzylinder 237 Kutta 181, 186 Ladedichte 245 Ladungsraum 245 Lafette 11 Lagrange 262, 282 Lagrangesches Problem 262 Lamothe 41, 279 Längenstreuung 231 Langevin 36, 81, 84, 87, 280 Langgeschoß 14, 15 Längsstreuung 231 Langweiler 248, 262, 265, 282 Längswind 213 Laplace 221 Leduc 262, 283 Legendre 30, 98, 111, 280 Leuchtspurgeschoß 27 Libellentafel 239 lineare Differentialgleichung 289 lineares Widerstandsgesetz 112, 170Liouville 248, 258, 266, 282 Linksabweichung 38 Lock 201, 281 Lohmann 88, 280 Lorenz 38, 73, 261, 278, 283 Lösung Siacci 122, 170 Love 262, 283 luftleerer Raum 49ff., 140

Luftdichte und Luftgewicht 17, 23, 48, 234 Luftdruck 25 Luftkräfte 273 Lufttemperatur 33, 48, 234 Luftverdichtungswelle 34, 40 Luftverdünnungswelle 34 Luftwiderstand 17, 18, 20, 33, 35. 186Luftwiderstandsgesetze 26, 29, 103, 122 Luftwiderstandsmessung 26 Mach 34, 279 Mache 261, 282 Magnuseffekt und Magnuskraft 15, 38, 43, 48, 194, 201, 279 Marcus 164 Maximalgasdruck 237, 244, 255, 260, 263, 267 Mayewski 32, 122, 278 mechanische Integration 175, 185 Methode G. H. M. 164, 175 Meßei 237, 262 Meßfehler 93 Meßschleife 236 Mittelwertsatz der Differentialrechnung 292 — der Integralrechnung 292 mittlere quadratische Abweichung 224mittlerer Treffpunkt 222, 226 Gasdruck 263, 267 Moisson 261, 282 Multiplikator 98 Mündungsgeschwindigkeit 244,260 Mündungswaagerechte 44, 52, 76, 140, 157, 172, 203 Musterbahn 75, 76, 112, 141, 142, 204Näherungslösung 155 Näherungswerte 77, 102 Newton 16, 30 Nitroglyzerinpulver 248 Nitrozellulosepulver 248 Nobel 282 Noether 201, 281 Normalbahn 54 Normalfälle, photogramm. 93

Normalgeschoß 15, 22 Normalkraft 273 Nowakowski 261, 283 numerische Differentiation 288 Integration 175, 181, 288 Nutation 187, 191 Ogivale Spitze 15, 22 Oszillograph 235, 262 Otto 108, 168, 279 Otto-Tabellen 108, 144, 170 Ouivet 98, 280 parallele Schichten 248, 265 Parameter 145 Parameterentwicklung 145 Pascal 185, 281 Perrin 185, 281 photogrammetrische Auswerteformeln 93 - Flugbahnvermessung 27, 88 – Normalfälle 93 Phototheodolit 27, 89 Pidduk 262, 283 Piobert 248, 282 Piton-Bressant 140, 172 Platrier 262, 283 Poincaré, Satz von 119, 148, 287 Poissoneffekt 38, 43, 48, 194 polytropisch 256, 266 Popoff 119, 133, 146, 151, 159, 197, 278, 281 Potenzgesetze 30, 48, 79, 105, 169, 202Potenzreihen 137, 172 Prandtl 35, 41, 279 Präzession 187, 189 Präzisionsmaß 222, 223 primäre Funktion 127, 170 Prüfung der ballistischen Verfahren 185 Pulverdruck 11 Pulverkorn 248 Pulverkraft 246, 264 Quadratisches Widerstandsgesetz 80, 106, 144 Querschnittsbelastung 21, 80, 185 Querstreuung 231

Räderstand, schiefer 12 Rechenschema 182 Rechtsabweichung 67, 85, 201 Rechtsdrall 11 Regii 261, 283 Reihenentwicklung 97, 137 Reihenumkehrung 138, 172, 287 Relativbewegung 213, 214 Résal 247, 261, 264, 282 Résalsche Gleichung 247, 261, 264 Riccatische Differentialgleichung 289 Richmond 201, 281 Richtfehler 94 Röggla 80, 280 Rohr 11 Rohrbremse 11 Rohrrücklauf 13 Rohrschwingungen 221 Rohrwiege 11 Rotationsgleichung 196 Rothe 77, 177, 184, 186, 230, 279, 280, 282 Rücklauflänge 14 Rücktrift 270 Runge König 279 Runge-Kutta 181, 186 Sabudski 32, 278, 279 Salih 185, 280 Sarrau 35, 261, 282, 283 Sauer 155, 281 Schallgeschwindigkeit 18, 33, 233 Scheffers 282 scheinbarer mittlerer Treffpunkt 226Scheve 33, 128, 282 Schichteneinteilung 217 Schießplatzkoordinaten 233 schiefwinklige Koordinaten 51, 146 173 Schildzapfen 13 Schmidt 78, 209, 279, 280 Schmitz 246, 249, 250, 253, 282 Schmundt 201, 281 Schrägentfernung 55, 78 Schrägstellung des Geschosses 201 Schunck 201, 281 Schulz 279 Schußtafel 52, 202, 232, 238

Schußtafelberechnung 232 Schußtafelschießen 233 Schußweite 44, 52, 77, 139, 172 Schußweitenänderung 204 Schwarzschild 205, 281 Schweikert 282 Schwenken 51, 152 Schwerkraft 16, 36, 43, 58, 85, 186 Sébert 282 Seitentrift 270 Seitenverschiebung 239 Seitenwind 214 Seitenwindformel 215 seitliche Reibungen 194 S-Geschoß 22 Siacci 18, 22, 23, 31, 48, 73, 98, 113, 122, 127, 132, 153, 160, 161, 174, 278, 279, 280 Sicherheitsparabel 57 Sinusformeln von Popoff 135 Sommerfeld 41, 201, 281 spezifischer Druck 245 Spitzgeschoß 42 Sporn 11 Sprengpunkt 88 sphärische Zykloide 201 Stabilität 188 Stabilitätsfaktor 191 Stange 157, 186, 279, 281 Stanke 164, 203, 205, 218, 281 Stauchkörper 237 Stefano 113, 280 Stereokomparator 27 Störungen der Flugbahn 159, 202, 205Störungsfunktion 207, 208 Störungsrechnung 205, 218 Stratosphäre 25 St. Robert 26, 279, 280 Stübler 203, 281 Stuhlmann 283 Sugot 261, 283 Sutor 89 **T**ait 194 Tangensformeln von Popoff 133 Tangentialkraft 273 Taylorreihe 148, 287 Teilbogenberechnung 97, 159, 174 Temperaturgradient 25, 207

Trägheitsmoment 188 Translationsgleichung bei Drall 196 Treffbild 221, 222, 233	Vieille 248, 265, 282 Vorhaltewinkel 270 Vorholer 11, 14
Treffwahrscheinlichkeit 10, 229	
trigonometrische Funktionen 284 Troposphäre 15	Wahrscheinliche Abweichung 224 Wahrscheinlichkeit 10, 221, 229
Umlaufefrequenz 201	Walinger 200 Waißmann 155 150 991
unbestimmte Ausdrücke 286	Wellenhildung 20
undestiminte Ausurucke 200	Wellenenveloppe 34
Vahlan 17 36 104 194 138 175	Widerstand 272
176 185 218 278 281	Widerstandeebane 188 103
Vallier 33 123 128 262 280 281	Widerstandsgrad 203
983	Wind Näherungsformeln 213
van der Wahl 245	Windeinfluß 213
Veithen 181 281	Windgeschwindigkeit 213 216
verallgemeinerte Darrieussche For-	Windkanal 275
meln 210	Winkelgruppe, obere 54
verallgemeinerte Hodographen-	-, untere 54
gleichung 121, 170	Wirbelbildung 39
Verbrennungsgeschwindigkeit 248	Wolff 282
Verbrennungsgesetz 248, 265	Wurfweite 270
Verfahren der wiederholten Inte-	
gration 182	Zedlitz 262, 263
— der zurücklaufenden Stopp-	Zentrierwulst 15
uhr 271	Zentrifugalkraft 36, 43, 48, 58, 85
— von Runge-Kutta 181	Zieleinrichtung 11
— von Vahlen 176	Zielfehler 221
Verkantung 11, 93	Zielgerät 270
Verschwenkungswinkel 91	Zimmerle 278
Verteilung der Schüsse 22	Zonenpotenzgesetz 32, 73, 122, 170
Vertikalmagazin 272	Zünderstellung 239
Verzögerung durch den Luftwider-	Zustandsgleichung 24
stand 21, 27, 30, 44, 48	zylindrische Geschosse 23

AN HAN G

Zahlentafeln ballistisch wichtiger Funktionen

Widerstandsgesetze von Krupp und Siacci

Function $10^6 \cdot K(v)$

(Definition der c-Werte S. 32, § 1 d)

v	Krupp	Siacci	v	Krupp	Siacci	v	Krupp	Siacci
50		121	342	2.902	260	720	3 614	322
60		121	344	2,979	264	740	3 583	318
70		121	346	3.051	267	760	3 553	314
80		121	348	3,115	270	780	3 597	310
00		121	350	3 174	273	800	3,509	306
100		121	259	3 931	976	800	5,002	300
100		121	354	3 986	978	820	2 4 90	209
110		191	356	3 3 3 7	270	840	9.459	900
190		121	358	3 384	201	040	9 490	235
120		121	360	3 4 2 1	286	880	2419	255
140		121	365	3 524	200	900	3.410	291
150	1 100	121	370	3 605	202	500	3,400	201
160	1,100	121	375	3.671	200	020	2 200	909
170	1,101	199	380	3 799	307	040	0,004	200
180	1,101	122	385	3,722	919	940	3,300	200
100	1,192	122	200	3,701	915	900	0,049	270
190	1,190	120	205	3,754	210	1000	3,334	41Z 960
200	1,150	120	400	2 049	019	1000	3,320	209
910	1 109	192	400	0,040	343	1090	9 907	900
210	1,190	120	405	9 004	295	1020	3,307	200
220-	1.205	124	405	3,804	040 900	1040	3.290	202
230	1,212	129	410	3,883	328	1060	3.284	259
240	1,225	120	410	3,900	330	1080	3.275	256
245	1,233	127	420	3,910	332	1100	3,267	252
200	1,243	120	430	3,943	330	1100	9.000	
200	1,200	129	440	3,900	339		3,260	249
260	1,270	100	400	3,901	042	1140	3 200	240
205	1,200	101	400	3,992	044 946	1100	3.250	243
270	1,309	100	470	3,997	340	1180	3.247	240
279	1,004	140	400	4,000	011	1200	3,244	238
280	1,303	140	490	9,000	348	1000	0.040	
280	1,397	140	500	0,000	040	1220	3,243	
290	1,409	161	510	2 009	949	1240	3.241	
290	1,405	179	520	3,994	940	1200	3.240	
300	1,001	114	520	3,562	949	1280	3,240	
209	1.580	176	540	2 056	249	1300	3,240	-
304	1,000	191	550	3,550	947		·	
304 206	1.648	195	560	3 095	947			
300	1,040	100	570	9.007	946			
210	1,007	105	580	3,807	945			
310 919	1,700	100	500	3,050	944			
014 914	1,779	904	600	2,011	044 940			
014 916	1.004	204	000	0,004	042			
010 910	1,000	912				i i		
010 990	1,547	210 910	610	2 000	941	1		
- 040 - 900	2,010	410 999	890	3,000	990			
044 994	2,079	996	620	2794	009 990			
024 200	2,102	220	640	2.704	200	1		
320 960	2,229	200	650	2740	000 99%			
028 990	⊿,308 9,901	200	660	3,140	000 999			
- 33U - 220	2,391	209	870	3,/19	000			
002 994	2,478	240 940	010 600	3,700	00L 900			
004	2,000	240 950	000	0,081 9,004	329	1		
330 990	2.004	200 959	700	3,004	328	I		
338	2,/39	200	100	3,047	320			
340	2.822	297						
1								

	_			(181. 2 10	0, 0. 121)				
D(u)	J(u)	A(u)	T(u)	u	D(u)	J(u)	A(u)	T(u)	u
1000	0,10000	100,000	1,000	1500,0					
1100	0.10090	110.044	1.007	1470.0	7 000	0 50404	1400.00	11.001	070.0
1900	0,10009	190,170	1,007	1470,0	7200	0,08404	1463,69	11.991	279,3
1200	0,10182	120,179	1,130	1440,0	7400	0,63572	1585,62	12,717	271,7
1300	0,10278	130.409	1,206	1410.3	7600	0,69028	1718,17	13,463	264,6
1400	0,10380	140,738	1.278	1380,7	7800	0,74780	1861,93	14,229	257,7
1500	0,10484	151,170	1,351	1351,2	8000	0,80835	2017,49	15,015	251,3
1600	0,10594	161,710	1,426	1321.9	8200	0,87207	2185,48	15,820	245,0
1700	0,10709	172,361	1,503	1292,7	8400	0,93913	2366,54	16,647	238,8
1800	0,10828	183,129	1,580	1263,8	8600	1,00964	2561,36	17,494	232,9
1900	0,10954	194,020	1,660	1234,9	8800	1,08377	2770,64	18,364	227,2
2000	0,11086	205,040	1,743	1206,2	9000	1,16171	2995,12	19,256	221,5
2100	0,11224	216,196	1,826	1177,8	9200	1,24367	3235,59	20,170	216.1
2200	0,11369	227,492	1,912	1149,6	9400	1,32980	3492.86	21.107	210.8
2300	0,11521	238,936	2,000	1121.5	9600	1.42022	3767.79	22.068	205.8
2400	0,11680	250,534	2,091	1093.7	9800	1.51516	4061.25	23.052	200.8
2500	0,11849	262,297	2,183	1066,1	10000	1,61491	4374,18	24,060	195,9
2600	0.12026	274.235	2.278	1038.7	10200	1.71967	4707 55	25 094	191.1
2700	0.12213	286.354	2.376	1011.6	10400	1.82976	5062.41	26,001	186.4
2800	0.12409	298.665	2.476	984.7	10600	1 94539	5439 83	27 210	182.0
2900	0.12617	311.178	2.579	958.1	10800	2 06672	5840 94	28 352	177.6
3000	0,12837	323,904	2,685	931,8	11000	2,19416	6266,92	29,492	173,3
3100	0 13069	336 856	9 70.1	9057	11900	9 99900	6710.02	20 660	160.1
3200	0 13315	350.046	2,754	870.0	11400	9 16959	7108 57	21 957	165.0
3300	0.13576	363 490	3 021	854.4	11600	2,40808	7706.02	22,007	161.0
3400	0 13853	377 203	3,021	890 4	11800	2,01022	0945 55	33,084	101,0
3500	0.14147	391,202	3 262	804 7	12000	2,77119	8240,00	34,342	157,2
						2,00000			100,0
3600	0,14459	405,503	3,389	780.3	12200	3.10487	9419.68	36,950	149,7
3700	0,14791	420,127	3,519	756,3	12400	3.28420	10058,4	38,302	146,1
3800	0,15145	435,091	3,653	732,7	12600	3,47247	10734,0	39,687	142,6
3900	0,15523	450,424	3,792	709,4	12800	3,66989	11448.0	41,106	139,3
4000	0,15925	466,146	3,935	686,6	13000	3,87716	12202,6	42,560	135,9
4100	0,16355	482,284	4,083	664.3	13200	4,0948	12999,6	44,049	132,7
4200	0,16815	498.865	4,236	642.5	13400	4,3231	13841,2	45,575	129,4
4300	0,17307	515,924	4,395	621.2	13600	4,5629	14729,6	47,138	126,3
4400	0,17832	533,491	4,558	600,4	13800	4,8145	15667.2	48,740	123,4
4500	0,18395	551,602	4,728	580,1	14000	5,0787	16653,3	50,381	120,4
4600	0,18999	570.296	4,903	560,4	14200	5,3559	17699.5	52,063	117.5
4700	0,19645	589,614	5,085	541,3	14400	5,6469	18799.5	53,785	114.7
4800	0.20338	609,602	5,273	522.7	14600	5.9524	19959.2	55,550	112.0
4900	0,21081	630,308	5,468	504.8	14800	6.2727	21181.5	57.358	109.3
5000	0,21878	651,784	5,669	487,6	15000	6,6091	22469,4	59,209	106,7
5200	0.23648	697.27	6.094	455.0	15200	6 9626	23826.3	61 107	104.1
5400	0.25677	746.55	6.549	425.2	15400	7,3335	25255 6	63.052	101.6
5600	0.27996	800.17	7.035	398.2	15600	7 7227	26760.9	65 046	99.2
5800	0.30632	858.75	7,553	374.1	15800	8 1307	28345 9	67 085	989
6000	0,33606	922,92	8,104	353,1	16000	8,5587	30014,5	69,175	94,6
6200	0 36997	993.40	8 696	325.0	16900	0,0000	21770.0		00.9
6400	0.40593	1070.86	9 297	319.8	16400	9,0000	33610.9	72 509	92,3
6600	0.44593	1155 99	9,936	307 1	16600	0.0745	25564.9	75,008	80,1 00 A
6800	0,48906	1249.44	10,599	296.4	16800	10 4940	376107	78.057	90,0 95 9
7000	0.53517	1351 81	11 985	287 9	17000	11 0909	20769 7	10,001	00,0
1	0,00011	1001,01	11,400	201,0	11000	11,0394	00100,1	00,410	03,8

Die primären Funktionen D(u), J(u), A(u), T(u) nach dem Widerstandsgesetz von Siacci

Tafel II

(Vgl. § 15 b, S. 127)

Zahlentafel häufig vorkommender Funktionen

x	e^x	e ^{-x}	sin x	cos x	$\operatorname{tg} x$	Sin x	Coj <i>x</i>	Lang x	x in Grad	$\lg(100x)$	ln(100 <i>x</i>)	Wahr- schein- lichkeits- funktion $\psi(x)$
0.00	1.0000	1.0000	0.0000	1.0000	0.0000	0.0000	1.0000	0.0000	0°00″		l _	0.00000
0.05	1.0513	0.9512	0.0500	0.9988	0.0500	0.0500	1,0013	0.0500	2°51′53′′	0.69897	1 60944	0.02690
0,10	1 1052	0 9048	0,0998	0,9950	0,1003	0,1002	1 0050	0,0000	5°43'46''	1,00000	2 30259	0.05378
0,15	1 1618	0.8607	0 1404	0.0888	0 1511	0 1506	1,0000	0,0001	8°25'40''	1,00000	2,00200	0,00070
0,10	1 2214	0.8187	0,1494	0,00000	0,2027	0,1000	1,0110	0,1400	11007/22//	1 20102	2,70803	0,00000
0,20	1,2214	0,0107	0,1007	0,0680	0,2021	0,2010	1,0201	0,1074	14010/96//	1,30103	2,99073	0,10731
0,20	1,2040	0,1100	0,2474	0,9009	0,2000	0.2020	1,0014	0.2449	17911/10//	1,39794	9.40100	0,13391
0,00	1 4 1 0 1	0,7400	0,2800	0,9000	0,3055	0,0040	1,0400	0,2913	1/ 11 19 00° 9/19//	1,47712	3,40120	0,10030
0,30	1,4191	0,7047	0.5429	0,9394	0,3050	0,3072	1,0019	0,3304	20 3 13	1,94407	3,00000	0,18002
0,40	1,4910	0,0103	0,3094	0,9211	0,4220	0,4652	1,0011	0,0000	22 00 0	1,00200	3,08808	0,21208
0,40	1,0000	0,0370	0,4500	0,9003	0,4001	0,4000	1,1000	0,4219	20 40 09	1,00021	3,80000	0.23981
0,00	1,0407	0,0000	0,4794	0,8770	0,0400	0,0211	1,1270	0,4021	20 30 32	1,09897	3,91202	0,20407
0.55	1.7333	0.5769	0.5227	0.8525	0.6131	0.5782	1.1551	0.5005	31°30′46″	1.74036	4.00733	0.28934
0.60	1.8221	0.5488	0.5646	0.8253	0.6841	0.6367	1,1855	0.5370	34° 22' 39"	1.77815	4 09434	0 31430
0.65	1.9155	0.5220	0.6052	0.7961	0.7602	0.6967	1,2188	0.5717	37°14′32″	1.81291	4 17439	0.33892
0.70	2.0138	0.4966	0.6442	0 7648	0.8423	0 7586	1 2552	0 6044	40° 6'25"	1 84510	4 24850	0.36317
0.75	2,1170	0.4724	0.6816	07317	0,9316	0.8223	1 2947	0,6352	42° 58' 19"	1,87506	4 31749	0.38705
0.80	2 2255	0.4493	0,0010	0,6967	0.0296	0.8881	1 3374	0,6640	45° 50' 12''	1 90309	4 38203	0.50705
0.85	2 3396	0 4974	0 7513	0,6600	1 1383	0.9561	1 3835	0,0010	48°49' 5"	1 99949	4 44965	0,41002
0.00	2,4596	0,1211	0,7833	0,6000	1,1603	1 0265	1,0000	0,0011	51° 33' 58"	1 95494	4 40081	0.45618
0,00	2,5857	0,1000	0,1000	0.5817	1 3984	1,0205	1 / 862	0,7100	54095159"	1,00424	4.40001	0.45018
1 00	2,0001	0,3670	0,0104	0,5017	1,5574	1,0000	1,4002	0,7616	57° 17' 45"	2,00000	4,00000	0,47802
1,00	2,1100		0,0410	0,0400	1,007#	1,1104		0,7010	01 11 40	2,00000	4,00017	0,0000
1.05	2.8577	0.3499	0.8674	0.4976	1.7433	1.2539	1.6038	0.7818	60° 9′38″	2.02119	4.65396	0.52119
1.10	3.0042	0.3329	0.8912	0.4536	1.9648	1.3356	1.6685	0.8005	63° 1'31″	2.04139	4.70048	0.54188
1.15	3.1582	0.3166	0.9128	0.4085	2.2345	1.4208	1.7374	0.8178	65°53′25″	2.06070	4.74493	0.56205
1.20	3.3201	0.3012	0.9320	0.3624	2.5722	1.5095	1.8107	0.8337	68°45′18″	2.07918	4.78749	0.58171
1.25	3,4903	0.2865	0,9490	0.3153	3.0096	1.6019	1.8884	0.8483	71°37′11″	2.09691	4.82831	0.60083
1.30	3.6693	0.2725	0.9636	0.2675	3.6693	1.6984	1.9709	0.8617	74° 29′ 4″	2,11394	4.86753	0.61942
1.35	3.8574	0.2592	0,9757	0,2190	4 4552	1,7991	2.0583	0.8741	77° 20' 57''	2,13033	4 90527	0.63747
1.40	4.0552	0.2466	0.9855	0 1700	5,7979	1,9043	2,1509	0.8854	80°12′51″	2,14613	4.94164	0.65498
1.45	4.2631	0.2346	0,9927	0.1205	8,2381	2.0143	2.2488	0.8957	83° 4'44''	2,16137	4,97673	0.67193
1.50	4.4817	0.2231	0.9975	0,0707	14,1014	2,1293	2.3524	0.9052	85° 56' 37''	2,17609	5.01064	0.68833
				0,0101								
1,60	4,9530	0,2019	0,9996	-0,0292	-34,2325	2,3756	2,5775	0,9217	91°40′24″	2.20412	5,07517	0,71949
1,70	5,4739	0,1827	0,9917	-0,1288	-7,6966	2,6456	2,8283	0,9354	97°24'10''	2,23045	5,13580	0,74847
1,80	6,0496	0,1653	0,9739	-0,2272	-4,2863	2,9422	3,1075	0,9468	103° 7′ 57″	2,25527	5,19296	0,77528
1,90	6,6859	0,1496	0,9463	-0,3233	-2,9271	3,2682	3,4177	0,9562	108° 51′ 43″	2.27875	5,24702	0,79999
2,00	7,3891	0,1353	0,9093	-0,4162	-2,1850	3,6269	3,7622	0,9640	114°35′30′′	2,30103	5,29832	0,82266
10.20	0.1000	0.1007	0.0000	0 70.10	1 5000	4.0010	47440	0.0707	100010/10/	0.00000	F 0 (51)	0.0/007
2,10	8,1662	0,1225	0,8632	- 0,5049	- 1,7099	4,0219	4,1443	0,9705	120° 19' 16''	2,32222	5,34711	0,84335
2,20	9,0250	0,1108	0,8085	-0,5885	-1,3738	4,4571	4,5679	0,9757	$126^{\circ} 3' 3''$	2.34242	5,39363	0,86216
2,30	9,9742	0,1003	0,7457	-0,6663	-1,1192	4,9370	5,0372	0,9801	131~46′49′′	2,36173	5,43808	0,87918
2,40	11,0232	0,0907	0,6755	-0,7374		5,4662	5,5569	0,9837	137° 30′ 36′′	2,38021	5,48064	0,89450
2,50	12,1825	0,0821	0,5985	0,8011	-0,7470	6,0502	6,1323	0,9866	143°14′22″	3,39794	5,52146	0,90825
9 60	13 4697	0.0742	0.5155	0.8560		6 6047	6 7600	0.0800	148° 58' 0"	9 41407	5 56069	0.92051
9 70	14 9707	0,0140	0,0100	0,6509	- 0,0010	7 1069	7 4795	0,0000	1540 41/554	0 42120	5 50040	0.02101
9 00	16 11.0191	0,0072	0,44/4	- 0,5041	- 0.9555	8 1010	8 9597	0,9910	160°95'41"	9 44716	5 62470	0.04105
2,00	18 17/1	0,0000	0,0000	0,0422	- 0,0000	0,1919	0,2027	0,0020	186° 0'90"	9 48940	5 66000	0.94054
2,00	20,1741	0,0000	0,2000	0,9710	- 0,2404	10 0170	10 0679	0.0040	17105940	9 47710	5 70270	0.04004
3,00	20,0800	0,0498	0,1411	<u> </u>	0,1420		10,0078	0,9901	1/1 03 14	2,4/112	0,10018	0,00008
3.20	24.5325	0.0408	-0.0584	-0.9983	0.0585	12.2459	12.2866	0.9967	$183^{\circ}20'47''$	2.50515	5,76832	0.96910
3.40	29,9641	0.0334	-0.2555	-0.9668	0.2644	14.965	14,999	0.9978	194°48′40″	2.53148	5,82895	0.97817
3.60	36.5982	0.0273	-0.4425	-0.8968	0.4935	18.285	18.313	0.9985	206° 15' 53"	2,55630	5.88610	0,98482
3.80	44.7012	0.0224	-0.6119	-0.7916	0.7736	22.339	22,362	0.9990	217°43′26″	2.57978	5,94017	0,98962
4.00	54 5982	0.0183	- 0.7568	-0.6536	1.1578	27,290	27,308	0.9993	229°10′59″	2.60206	5.99146	0,99302
1-100	1.0000	12,21.00	0,.000	, 0,0000		1				1 -,		

	Nach Formel (17) u. (18) mit $\lambda = 0,0058$; $\delta_0 = 1,22$; $T_0 = 283$		Nach Everling: $\delta(y) = \delta_0 \cdot e^{-k \cdot y}$ $(k = 0.45 \cdot 10^{-4})$	91	$\begin{vmatrix} \text{Nach Forme} \\ \text{mit } \lambda = 0,00 \\ T_0 = \end{vmatrix}$	Nach Everling: $\delta(y) = \delta_0 \cdot e^{-k \cdot y}$ $(k = 0.45 \cdot 10^{-4})$	
 	$\lg^{10} \frac{\delta(y)}{\delta_0}$	$\left \lg^{10} \right \left \frac{T_0}{T(y)} \right $	$\left \left \lg^{10} \frac{\delta(y)}{\delta_0} \right _{\text{Ev.}} \right $		$\lg^{10} \frac{\delta(y)}{\delta_0}$	$\lg^{10} \sqrt{\frac{T_0}{T(y)}}$	$\left \frac{\log^{10} \frac{\delta(y)}{\delta_0}}{\operatorname{Ev.}} \right $
0	0	0	0				
100	9,9956	0,0004	9,9955	5100	9,7657	0,0240	9,7705
200	9,9913	0,0009	9,9910	5200	9,7608	0,0245	9,7660
300	9,9869	0,0013	9,9865	5300	9,7560	0,0250	9,7615
400	9,9825	0,0018	9,9820	5500	9,7511	0,0255	9,7570
	0,0797	0.0027	0.0720	5600	0.7419	0.0965	0.7480
700	9,9757	0,0027	9,9730	5700	9,7415	0,0205	97435
800	9,9095	0.0036	9 9640	5800	97314	0.0275	9 7390
900	9 9605	0,0040	9 9595	5900	9.7265	0.0280	9.7345
1000	9,9560	0,0045	9,9550	6000	• 9,7215	0,0285	9,7300
1100	9.9516	0.0050	9.9505	6100	9.7166	0.0290	9,7255
1200	9.9472	0.0054	9.9460	6200	9.7116	0.0295	9,7210
1300	9.9427	0.0059	9.9415	6300	9,7066	0.0300	9,7165
1400	9,9382	0,0063	9,9370	6400	9,7016	0,0305	9,7120
1500	9,9337	0,0068	9,9325	6500	9,6966	0,0310	9,7075
1600	9,9292	0,0072	9,9280	6600	9,6916	0,0316	9,7030
1700	9,9247	0,0077	9,9235	6700	9,6865	0,0 321	9,6985
1800	9.9202	0,0082	9,9190	6800	9,6815	0,0326	9,6940
1900	9,9157	0,0086	9,9145	6900	9,6764	0,0331	9,6895
2000	9,9112	0.0091	9,9100	7000	9,6714	0,0336	9,6850
2100	9,9066	0,0096	9,9055	7100	9,6663	0,0342	9,6805
2200	9,9021	0,0100	9,9010	7200	9,6612	0,0347	9,6760
1 2300	9,8975	0,0105	9,8965	7900	9,6561	0,0352	9,6715
2400	9,8930	0,0110	9,8920	7400	9,6510	0,0357	9,6670
2500	9,8884	. 0,0114	9,8875	7500	9,6458	0,0362	9,6625
2600	9,8838	0,0119	9,8830	7600	9,6407	0,0368	9,6580
2700	9,8792	0,0124	9,8785	7700	9,6355	0,0373	9,6535
2800	9,8746	0,0128	9,8740	7800	9,6304	0,0378	9,6490
2900	9,8700	0,0133	9,8695	7900	9,6252	0,0384	9,6445
3000	9,8653	0,0138	9,8000	8000	9,6200	0,0389	9,0400
3100	9,8607	0,0143	9,8605	8100	9,6148	0,0394	9,6355
3200	9,8561	0,0147	9,8500	8200	9,6095	0,0400	9,0310
3300	9,8014	0,0152	9,8515	8300	9,0043	0,0405	9,0200
3500	9,8420	0.0162	9,8425	8500	9,5990	0,0416	9.6175
2600	0.9979	0.0166	0.0200	8600	0 5995	0,0491	0.6120
3700	0,0070	0,0100	9,0300	8700	0,5829	0,0421	9,6085
3800	9,8320	0,0176	9,8335	8800	0,5770	0.0427	9,6040
3900	9.8232	0.0181	9 8245	8900	9,5726	0.0437	9,5995
4000	9,8185	0,0186	9,8200	9000	9,5673	0,0443	9,5950
4100	9.8137	0.0191	9,8155	9100	9.5620	0.0448	9.5905
4200	9,8090	0.0196	9.8110	9200	9,5566	0.0454	9,5860
4300	9,8042	0,0200	9,8065	9300	9,5512	0,0459	9,5815
4400	9,7994	0,0205	9,8020	9400	9,5458	0,0465	9,5770
4500	9,7947	0,0210	9,7975	9500	9,5405	0,0470	9,5725
4600	9,7899	0,0215	9,7930	9600	9,5350	0,0476	9,5680
4700	9,7850	0,0220	9,7885	9700	9,5296	0,0481	9,5635
4800	9,7802	0,0225	9,7840	9800	9,5242	0,0487	9,5590
4900	9,7754	0,0230	9,7795	99 00	9,5187	0,0492	9,5545
5000	9,7706	0,0235	9,7750	10000	9,5133	0,0498	9,5500